Solar System Research

, Volume 52, Issue 2, pp 180–188 | Cite as

“Horseshoe” Structures in the Debris Disks of Planet-Hosting Binary Stars

Article
  • 4 Downloads

Abstract

The formation of a planetary system from the protoplanetary disk leads to destruction of the latter; however, a debris disk can remain in the form of asteroids and cometary material. The motion of planets can cause the formation of coorbital structures from the debris disk matter. Previous calculations have shown that such a ring-like structure is more stable if there is a binary star in the center of the system, as opposed to a single star. To analyze the properties of the coorbital structure, we have calculated a grid of models of binary star systems with a circumbinary planet moving in a planetesimal disk. The calculations are performed considering circular orbits of the stars and the planet; the mass and position of the planet, as well as the mass ratio of the stars, are varied. The analysis of the models shows that the width of the coorbital ring and its stability significantly depend on the initial parameters of the problem. Additionally, the empirical dependences of the width of the coorbital structure on the parameters of the system have been obtained, and the parameters of the models with the most stable coorbital structures have been determined. The results of the present study can be used for the search of planets around binary stars with debris disks.

Keywords

modeling planetesimal disks binary star systems disk and planet interaction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexandersen, M., Gladman, B., Greenstreet, S., Kavelaars, J.J., Petit, J.-M., and Gwyn, S., A Uranian Trojan and the frequency of temporary giant-planet coorbitals, Science, 2013, vol. 341, pp. 994–997.ADSCrossRefGoogle Scholar
  2. Artymowicz, P. and Lubow, S.H., Mass flow through gaps in circumbinary disks, Astrophys. J., 1996, vol. 467, pp. L77–L80.ADSCrossRefGoogle Scholar
  3. Bonnell, I.A. and Bate, M.R., The formation of close binary systems, Mon. Not. R. Astron. Soc., 1994, vol. 271, pp. 999–1004.ADSCrossRefGoogle Scholar
  4. Bowell, E., Holt, H.E., Levy, D.H., Innanen, K.A., Mikkola, S., and Shoemaker, E.M., 1990 MB: The first Mars Trojan, Bull. Am. Astron. Soc., 1990, vol. 22, p. 1357.ADSGoogle Scholar
  5. Carrasco-González, C., Henning, T., Chandler, C.J., Linz, H., Pérez, L., Rodríguez, L.F., Galván-Madrid, R., Anglada, G., Birnstiel, T., van Boekel, R., Flock, M., Klahr, H., Macias, E., Menten, K., Osorio, M., et al., The VLA view of the HL Tau disk: disk mass, grain evolution, and early planet formation, Astrophys. J., 2016, vol. 821, p. L16.ADSCrossRefGoogle Scholar
  6. Connors, M., Wiegert, P., and Veillet, C., Earth’s Trojan asteroid, Nature, 2011, vol. 475, pp. 481–483.ADSCrossRefGoogle Scholar
  7. Demidova, T.V. and Shevchenko, I.I., Spiral patterns in planetesimal circumbinary disks, Astrophys. J., 2015, vol. 805, pp. 38–46.ADSCrossRefGoogle Scholar
  8. Demidova, T.V. and Shevchenko, I.I., Three-lane and multilane signatures of planets in planetesimal discs, Mon. Not. R. Astron. Soc., 2016, vol. 463, p. L22.ADSCrossRefGoogle Scholar
  9. Duchêne, G., Binary fraction in low-mass star forming regions: a reexamination of the possible excesses and implications, Astron. Astrophys., 1999, vol. 341, pp. 547–552.ADSGoogle Scholar
  10. Grinin, V.P., Demidova, T.V., and Sotnikova, N.Ya., Modulation of circumstellar extinction in a young binary system with a low-mass companion in a noncoplanar orbit, Astron. Lett., 2010, vol. 36, no. 11, p. 808.ADSCrossRefGoogle Scholar
  11. Hanawa, T., Ochi, Y., and Ando, K., Gas accretion from a circumbinary disk, Astrophys. J. 2010, vol. 708, pp. 485–497.ADSCrossRefGoogle Scholar
  12. Kaigorodov, P.V., Bisikalo, D.V., Fateeva, A.M., and Sytnov, A.Yu., Structure of the circumbinary envelope around a young binary system, Astron. Rep., 2010, vol. 54, no. 12, p. 1078.ADSCrossRefGoogle Scholar
  13. Kennedy, G.M., Wyatt, M.C., Sibthorpe, B., Phillips, N.M., Matthews, B.C., and Greaves, J.S., Coplanar circumbinary debris discs, Mon. Not. R. Astron. Soc., 2012, vol. 426, pp. 2115–2128.ADSCrossRefGoogle Scholar
  14. Kraus, A.L. and Hillenbrand, L.A., The coevality of young binary systems, Astrophys. J., 2009, vol. 704, pp. 531–547.ADSCrossRefGoogle Scholar
  15. Kuchner, M.J. and Holman, M.J., The geometry of resonant signatures in debris disks with planets, Astrophys. J., 2003, vol. 558, pp. 1110–1120.ADSCrossRefGoogle Scholar
  16. Larwood, J.D. and Papaloizou, J.C.B., The hydrodynamical response of a tilted circumbinary disc: linear theory and non-linear numerical simulations, Mon. Not. R. Astron. Soc., 1997, vol. 285, pp. 288–302ADSCrossRefGoogle Scholar
  17. Mayama, S., Tamura, M., Hanawa, T., Matsumoto, T., Ishii, M., Pyo, T.-S., Suto, H., Naoi, T., Kudo, T., Hashimoto, J., Nishiyama, S., Kuzuhara, M., and Hayashi, M., Direct imaging of bridged twin protoplanetary disks in a young multiple star, Science, 2010, vol. 327, p. 306.ADSCrossRefGoogle Scholar
  18. Meschiari, S., Circumbinary planet formation in the Kepler-16 system. I. N-body simulations, Astrophys. J., 2012a, vol. 752, p. 71.ADSCrossRefGoogle Scholar
  19. Meschiari, S., Planet formation in circumbinary configurations: turbulence inhibits planetesimal accretion, Astrophys. J., 2012b, vol. 761, p. L7.ADSCrossRefGoogle Scholar
  20. Moriwaki, K. and Nakagawa, Y., A planetesimal accretion zone in a circumbinary disk, Astrophys. J., 2004, vol. 609, pp. 1065–1070.ADSCrossRefGoogle Scholar
  21. Murray, C.D. and Dermott, S.F., Solar System Dynamics, Cambridge: Cambridge Univ. Press, 1999.MATHGoogle Scholar
  22. Osorio, M., Anglada, G., Carrasco-González, C., Torrelles, J.M., Macías, E., Rodríguez, L.F., Gómez, J.F., D’Alessio, P., Calvet, N., Nagel, E., Dent, W.R.F., Quanz, S.P., Reggiani, M., and Mayen-Gijon, J.M., Imaging the inner and outer gaps of the pre-transitional disk of HD 169142 at 7 mm, Astrophys. J., 2014, vol. 791, p. L36.ADSCrossRefGoogle Scholar
  23. Ozernoy, L.M., Gorkavyi, N.N., Mather, J.C., and Taidakova, T.A., Signatures of exosolar planets in dust debris disks, Astrophys. J., 2000, vol. 537, pp. L147–L151.ADSCrossRefGoogle Scholar
  24. Paardekooper, S.-J., Leinhardt, Z.M., Thébault, P., and Baruteau, C., How not to build Tatooine: the difficulty of in situ formation of circumbinary planets Kepler 16b, Kepler 34b, and Kepler 35b, Astrophys. J., 2012, vol. 754, p. L16.ADSCrossRefGoogle Scholar
  25. Picogna, G. and Marzari, F., Three-dimensional modeling of radiative disks in binaries, Astron. Astrophys., 2013, vol. 556, p. A148.ADSCrossRefGoogle Scholar
  26. Piétu, V., Gueth, F., Hily-Blant, P., Schuster, K.-F., and Pety, J., High resolution imaging of the GG Tauri system at 267GHz, Astron. Astrophys., 2011, vol. 528, p. A81.CrossRefGoogle Scholar
  27. Quanz, S.P., Avenhaus, H., Buenzli, E., Garufi, A., Schmid, H.M., and Wolf, S., Gaps in the HD 169142 protoplanetary disk revealed by polarimetric imaging: signs of ongoing planet formation? Astrophys. J., 2013, vol. 766, p. L2.ADSCrossRefGoogle Scholar
  28. Rodriguez, D.R. and Zuckerman, B., Binaries among debris disk stars, Astrophys. J., 2012, vol. 745, p. 147.ADSCrossRefGoogle Scholar
  29. Rodriguez, D.R., Kastner, J.H., Wilner, D., and Qi, C., Imaging the molecular disk orbiting the twin young suns of V4046 Sgr, Astrophys. J., 2010, vol. 720, pp. 1684–1690.ADSCrossRefGoogle Scholar
  30. Rodriguez, D.R., Duchêne, G., Tom, H., Kennedy, G.M., Matthews, B., Greaves, J., and Butner, H., Stellar multiplicity and debris discs: an unbiased sample, Mon. Not. R. Astron. Soc., 2015, vol. 449, pp. 3160–3170.ADSCrossRefGoogle Scholar
  31. Ruge, J.P., Wolf, S., Demidova, T., and Grinin, V., Structures in circumbinary disks: prospects for observability, Astron. Astrophys., 2015, vol. 579, p. A110.ADSCrossRefGoogle Scholar
  32. Sheppard, S.S. and Trujillo, C.A., A thick cloud of Neptune Trojans and their colors, Science, 2006, vol. 313, pp. 511–514.ADSCrossRefGoogle Scholar
  33. Shevchenko, I.I., Chaotic zones around gravitating binaries, Astrophys. J., 2015, vol. 799, p. 8.ADSCrossRefGoogle Scholar
  34. Trilling, D.E., Stansberry, J.A., Stapelfeldt, K.R., Rieke, G.H., Su, K.Y.L., Gray, R.O., Corbally, C.J., Bryden, G., Chen, C.H., Boden, A., and Beichman, C.A., Debris disks in main-sequence binary systems, Astrophys. J., 2007, vol. 658, pp. 1264–1288.CrossRefGoogle Scholar
  35. Verlet, L., Computer “experiments” on classical fluids. I. Termodynamical properties of Lennard–Jones molecules, Phys. Rev., 1967, vol. 159, pp. 98–103.ADSCrossRefGoogle Scholar
  36. Verrier, P.E. and Evans, N.W., Planets and asteroids in the γ Cephei system, Mon. Not. R. Astron. Soc., 2006, vol. 368, pp. 1599–1608.ADSCrossRefGoogle Scholar
  37. Verrier, P.E. and Evans, N.W., Planetary stability zones in hierarchical triple star system, Mon. Not. R. Astron. Soc., 2007, vol. 382, pp. 1432–1446.ADSCrossRefGoogle Scholar
  38. Verrier, P.E. and Evans, N.W., HD 98800: a most unusual debris disc, Mon. Not. R. Astron. Soc., 2008, vol. 390, pp. 1377–1387.ADSGoogle Scholar
  39. Xiang-Gruess, M. and Papaloizou, J.C.B., Interaction between massive planets on inclined orbits and circumstellar discs, Mon. Not. R. Astron. Soc., 2013, vol. 431, pp. 1320–1336.ADSCrossRefGoogle Scholar
  40. Zhou, J.-L., Xie, J.-W., Liu, H.-G., Zhang, H., and Sun, Y.-S., Forming different planetary systems, Res. Astron. Astrophys., 2012, vol. 12, pp. 1081–1106.ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Central (Pulkovo) Astronomical ObservatoryRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations