Solar System Research

, Volume 50, Issue 3, pp 220–224 | Cite as

Theoretical calculation of the interannual variability of the Earth’s insolation with daily resolution

  • V. M. Fedorov


Based on the astronomical ephemerides DE-406, theoretical calculations have been performed of the interannual variability of the Earth’s insolation related to celestial-mechanical processes for 365 points of a tropical year in the time period from 1900 to 2050. It has been determined that the average amplitude of variations of the interannual insolation is 0.310 W/m2 (0.023% of the solar constant). The calculated variations are characterized by strict periodicity that corresponds with the length of a synodic month. Connection between the extreme values of the calculated insolation variability and syzygies has been defined. The average amplitude of the calculated variability exceeds by 1.7 times (0.01% of the solar constant) the amplitude of the interannual variability in the 11-year variation of the total Earth’s insolation.


insolation total solar irradiance solar constant interannual variability synodic period synodic variation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abdusamatov, Kh.I., Solar radiation flux decrease and Earth’s global temperature lowering down to the deep cooling in the middle of XXI century, Izv. Krymsk. Astrofiz. Observ., 2007, vol. 103, no. 4, pp. 292–298.Google Scholar
  2. Bakulin, P.I., Kononovich, E.V., and Moroz, V.I., Kurs obshchei astronomii (Course of General Astronomy), Moscow: Nauka, 1983.Google Scholar
  3. Beer, J., Mende, W., and Stellmacher, R., The role of the Sun in climate forcing, J. Quaternary Sci. Rev., 2000, vol. 19, pp. 403–415.ADSCrossRefGoogle Scholar
  4. Borisenkov, E.P., Tsvetkov, A.V., and Agaponov, S.V., On some characteristics of insolation changes in the past and the future, Climat. Change, 1983, no. 5, pp. 237–244.CrossRefGoogle Scholar
  5. Borisenkov, E.P., Tsvetkov, A.V., and Eddy, J.A., Combined effects of Earth orbit perturbations and solar activity în terrestrial insolation. Pt. 1: sample days and annual mean values, J. Atmosph. Sci., 1985, vol. 42, no. 9, pp. 933–940.ADSCrossRefGoogle Scholar
  6. Crommelynck, D. and Dewitte, S., Solar constant temporal and frequency characteristics, Solar Phys., 1997, vol. 173, no. 1, pp. 177–191. Doi: 10.1023/A:1004916413800ADSCrossRefGoogle Scholar
  7. Drozdov, O.A., Vasil’ev, N.V., Raevskii, A.N., Smekalova, L.K., and Shkol’nyi, V.P., Klimatologiya (Climatology), Leningrad: Gidrometeoizdat, 1989.Google Scholar
  8. Duboshin, G.N., Nebesnaya mekhanika. Osnovnye zadachi i metody (Celestial Mechanics. The Main Aims and Methods), Moscow: Nauka, 1975.Google Scholar
  9. Fedorov, V.M., Interannual variability of the Solar constant, Solar Syst. Res., 2012, vol. 46, no. 2, pp. 170–176.ADSCrossRefGoogle Scholar
  10. Fedorov, V.M., Interannual variations of tropical year duration, Dokl. Ross. Akad. Nauk, 2013, vol. 451, no. 1, pp. 95–97. Doi: 10.7868/S086956521319016XGoogle Scholar
  11. Fedorov, V.M., Latitudinal variety of incoming solar radiation in different time cycles, Dokl. Ross. Akad. Nauk, 2015, vol. 460, no. 3, pp. 339–342. Doi: 10.7868/S0869565215030196Google Scholar
  12. Foukal, P., Fröhlich, C., Spruit, H., and Wigley, T.M.L., Variations in solar luminosity and their effect on the Earth’s climate, Nature, 2006, vol. 443, pp. 161–166. Doi: 10.1038/nature05072ADSCrossRefGoogle Scholar
  13. Giorgini, J.D., Yeomans, D.K., Chamberlin, A.B., Chodas, P.W., Jacobson, R.A., Keesey, M.S., Koop, G., and Lean, J.L., A new, lover value of total solar irradiante: evidence and climate significance, Geophys. Rev. Lett., 2011, vol. 38, p. L01706. Doi: 10.1029/2010GL045777.Google Scholar
  14. Grebenikov, E.A. and Ryabov, Yu.A., Rezonansy i malye znamenateli v nebesnoi mekhanike (Resonances and Small Consequents in Celestial Mechanics), Moscow: Nauka, 1978.Google Scholar
  15. Idel’son, N.I., Etyudy po nebesnoi mekhanike (Etudes on Celestial Mechanics), Moscow: Nauka, 1975.Google Scholar
  16. Kondrat’ev, K.Ya., Aktinometriya (Actinometry), Leningrad: Gidrometeoizdat, 1965.Google Scholar
  17. Koop, G. and Lean, J.L., A new, lower value of total solar irradiance: evidence and climate significance, Geophys. Rev. Lett., 2011, vol. 38, p. L01706. Doi: 10.1029/2010GL045777.ADSGoogle Scholar
  18. Lieske, J.H., Ostro, S.J., Standish, E.M., and Wimberly, R.N., JPL’s on-line solar system data service, Bull. Am. Astron. Soc., 1996, vol. 28, no. 3, p. 1158.ADSGoogle Scholar
  19. Mackey, R., The Sun’s role in regulating the Earth’s climate dynamics, Energy Environ., 2009, vol. 20, no. 1, pp. 25–73.ADSCrossRefGoogle Scholar
  20. Makarova, E.A., Kharitonov, A.V., and Kazachevskaya, T.V., Potok solnechnogo izlucheniya (Solar Radiation Flux), Moscow: Nauka, 1991.Google Scholar
  21. Marov, M.Ya., Planety Solnechnoi sistemy (Planets of the Solar System), Moscow: Nauka, 1981.Google Scholar
  22. Milankovich, M., Matematicheskaya klimatologiya i astro-nomicheskaya teoriya kolebanii klimata (Mathematical Climatology and Astronomical Theory of Climate Variations), Moscow-Leningrad: Gos. Ob”ed. Nauch.-Tekhn. Izd., 1939.Google Scholar
  23. Monin, A.S. and Shishkov, Yu.A., Climate as a physical problem, Usp. Fiz. Nauk, 2000, vol. 170, no. 4, pp. 419–445.CrossRefGoogle Scholar
  24. NASA, Jet Propulsion Laboratory California Institute of Technology (JPL Solar System Dynamics). http://ssd.jpl.nasa.govGoogle Scholar
  25. Willson, R.C., Solar irradiance variations and solar activity, J. Geophys. Res., 1982, vol. 86, pp. 4319–4326.ADSCrossRefGoogle Scholar
  26. Willson, R.C. and Mordvinov, A.V., Secular total solar irradiance trend during solar cycles 21 and 22, Geophys. Res. Lett., 2003, vol. 30, pp. 1199–1202. Doi: 10.1029/2002GL016038.ADSCrossRefGoogle Scholar
  27. World Radiation Center. www.pmodwrc.chGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2016

Authors and Affiliations

  1. 1.Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations