Skip to main content
Log in

Thermochemical constraints on the thermal state, composition, and mineralogy of the upper mantle of the Moon: Evidence from the seismic models

  • Published:
Solar System Research Aims and scope Submit manuscript

Abstract

The thermal state, heat flow, and thermochemical evolution of the Moon are still debatable, and the temperature of lunar interiors is one the most uncertain physical parameters. Transformation of profiles of the velocities of the P and S seismic waves in the lunar mantle obtained by processing the Apollo lunar seismic data into the temperature-depth relationships was performed by the method of thermodynamic modeling in the Na2O-TiO2-CaO-FeO-MgO-Al2O3-SiO2 system. This was the basis for testing of four seismic models in relation to the thermal regime and chemical composition of the mantle in a wide range of the concentrations of CaO (2–5%), Al2O3 (2–6.5%), and FeO (8.5–13%). In contrast to the Earth’s mantle, the chemical composition is of key importance for conversion of the velocities in the same seismic model into the temperature effects. The most probable composition of the upper mantle corresponds to olivine-bearing pyroxenite depleted in refrectory oxides (∼2 wt % CaO and Al2O3). Based on the seismic models, constraints on the temperature distribution in the mantle, heat flow, and uranium concentration in the Moon were established. Estimation of the upper limits of the total heat flow resulted in approximately half compared with the Apollo measurements. The results of conversion of the velocities of the P and S seismic waves into the temperature-depth relationships show that, independently on the composition, the positive gradient in the velocities of the P and S waves results in the negative temperature gradient in the mantle, which does not have a physical basis. The velocities of P and S waves should be almost constant or decrease slightly (especially V S ) as a result of the influence of the temperature increasing more rapidly than the pressure for an adequate distribution of temperature in the lunar mantle. The suggested approach to testing of the velocity structure of the lunar mantle based on the methods of thermodynamics and mineral physics provides an independent instrument for estimation of the reliability of the studied seismic model and its consistence with the petrological and thermal models. The main result of this study is self-consistent information on the distribution of the velocities of the P and S waves-temperature (T P,S )-chemical and mineral composition-density-depth, which provides more reliable constraints on the internal structure of the Moon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Basaltic Volcanism Study Project. Basaltic Volcanism on the Terrestrial Planets, New York: Pergamon, 1981.

  • Burmin, V., Stroenit Zemli i Luny po seismicheskim dannym (Structure of the Earth and the Moon according to Seismic Data), Palmarium Acad. Publ., 2012.

    Google Scholar 

  • Galimov, E.M., On the origin of Moon matter, Geokhimiya, 2004, no. 7, pp. 691–706.

    Google Scholar 

  • Galimov, E.M., The Moon and the Earth formation from the single supraplanetary gas-dust cloud (report on 19th All-Russian Symp. on isotopes geochemistry Nov. 16, 2010), Geokhimiya, 2011, no. 6, pp. 563–580.

    Google Scholar 

  • Gor’kavyi, N.N., The Moon and double asteroids formation, Izv. Krym. Astron. Observ., 2007, vol. 103, no. 2, pp. 143–155.

    Google Scholar 

  • Gudkova, T.V. and Raevskii, S.N., Spectrum of the free oscillations of the Moon, Solar Syst. Res., 2013, vol. 47, no. 1, pp. 11–19.

    Article  ADS  Google Scholar 

  • Demidova, S.I., Nazarov, M.A., Lorenz, K.A., Kurat, G., Brandstaetter, F., and Ntaflos, T., Chemical composition of lunar meteorites and lunar core matter, Petrologiya, 2007, vol. 15, pp. 416–437.

    Google Scholar 

  • Dodd, R.T., Meteorites — a Petrologic-Chemical Synthesis, Cambridge Univ. Press, 1981.

    Google Scholar 

  • Elkins-Tanton, L.T. and Grove, T.L., Water (hydrogen) in the lunar mantle: results from petrology and magma ocean modeling, Earth Planet. Sci. Lett., 2011, vol. 307, pp. 173–179.

    Article  ADS  Google Scholar 

  • Elkins-Tanton, L.T., Occam’s origin of the Moon, Nature Geosci., 2013, vol. 6, pp. 996–998.

    Article  ADS  Google Scholar 

  • Fabrichnaya, O.B. and Kuskov, O.L., Constitution of the mantle. 1. Phase relations in the FeO-MgO-SiO2 system at 10–30 GPa, Phys. Earth Planet. Int., 1991, vol. 69, pp. 56–71.

    Article  ADS  Google Scholar 

  • Gagnepain-Beyneix, J., Lognonné, P., Chenet, H., Lombardi, D., and Spohn, T., A seismic model of the lunar mantle and constraints on temperature and mineralogy, Phys. Earth Planet Int., 2006, vol. 159, pp. 140–166.

    Article  ADS  Google Scholar 

  • Garcia, R.F., Gagnepain-Beyneix, J., Chevrot, S., and Lognonné, P., Very preliminary reference Moon model, Phys. Earth Planet. Int., 2011, vol. 188, pp. 96–113.

    Article  ADS  Google Scholar 

  • Goins, N.R., Dainty, A.M., and Toksoz, M.N., Lunar seismology: the internal structure of the Moon, J. Geophys. Res., 1981, vol. 86, pp. 5061–5074.

    Article  ADS  Google Scholar 

  • Grimm, R.E., Geophysical constraints on the lunar Procellarum KREEP Terrane, J. Geophys. Res. Planets, 2013, vol. 118, pp. 768–777. doi:10.1029/2012JE004114

    Article  ADS  Google Scholar 

  • Grott, M., Knollenberg, J., and Krause, C., Apollo lunar heat flow experiment revisited: a critical reassessment of the in situ thermal conductivity determination, J. Geophys. Res., 2010, vol. 115, p. E11005. doi: 10.1029/2010JE003612

    Article  ADS  Google Scholar 

  • Gudkova, T.V. and Zharkov, V.N., The exploration of the lunar interior using torsional oscillations, Planet. Space Sci., 2002, vol. 50, pp. 1037–1048.

    Article  ADS  Google Scholar 

  • Gusev, A., Kawano, N., and Petrova, N., Gravitation Investigations on the SELENE mission and the existence of a lunar core, Astron. Astrophys. Trans., 2003, vol. 22, nos. 4–5, pp. 579–584.

    Article  ADS  Google Scholar 

  • Hagermann, A. and Tanaka, S., Ejecta deposit thickness, heat flow, and a critical ambiguity on the Moon, Geophys. Res. Lett., 2006, vol. 33, p. L19203. doi: 10.029/2006GL027030

    Article  ADS  Google Scholar 

  • Hikida, H. and Mizutani, H., Mass and moment of inertia constraints on the lunar crustal thickness: relations between crustal density, mantle density, and the reference radius of the crust-mantle boundary, Earth Planets Sci., 2005, vol. 57, pp. 1121–1126.

    ADS  Google Scholar 

  • Hirschmann, M.M., Mantle solidus: experimental constrain and the effects of peridotite composition, Geochem. Geophys. Geosyst., 2000, vol. 1, no. 2000GC000070.

    Google Scholar 

  • Hood, L.L., Geophysical constraints on the lunar interior, in Origin of the Moon, Hartmann, W.K., Phillips, R.J., and Taylor, G.J., Eds., Houston: Lunar and Planet. Inst., 1986, pp. 361–388.

    Google Scholar 

  • Hood, L.L. and Jones, J.H., Geophysical constraints on lunar bulk composition and structure: a reassessment, J. Geophys. Res. E, 1987, vol. 92, pp. 396–410.

    Article  ADS  Google Scholar 

  • Hood, L.L., Mitchell, D.L., Lin, R.P., Acuña, M.H., and Binder, A.B., Initial measurements of the lunar induced magnetic dipole moment using Lunar Prospector magnetometer data, Geophys. Res. Lett., 1999, vol. 26, pp. 2327–2330.

    Article  ADS  Google Scholar 

  • Jarosewich, E., Chemical analyses of meteorites: a compilation of stony and iron meteorite analysis, Meteoritics, 1990, vol. 25, pp. 323–337.

    Article  ADS  Google Scholar 

  • Jones, J.H. and Delano, J.W., A three component model for the bulk composition of the Moon, Geochim. Cosmochim. Acta, 1989, vol. 53, pp. 513–527.

    Article  ADS  Google Scholar 

  • Keihm, S.J. and Langseth, M.G., Lunar thermal regime to 300 km, Proc. 8th Lunar Sci. Conf., Houston, 1977, pp. 499–514.

    Google Scholar 

  • Khan, A., Mosegaard, K., and Rasmussen, K.L., A new seismic velocity model for the Moon from a Monte Carlo inversion of the Apollo lunar seismic data, Geophys. Res. Lett., 2000, vol. 27, pp. 1591–1594.

    Article  ADS  Google Scholar 

  • Khan, A., Connolly, J.A.D., Maclennan, J., and Mosegaard, K., Joint inversion of seismic and gravity data for lunar composition and thermal state, Geophys. J., 2007, vol. 168, pp. 243–258.

    Article  ADS  Google Scholar 

  • Khan, A., Pommier, A., Neumann, G., and Mosegaard, K., The lunar moho and the internal structure of the Moon: a geophysical perspective, Tectonophys., 2013, vol. 609, pp. 331–352.

    Article  Google Scholar 

  • Konopliv, A.S., Asmar, S.W., Carranza, E., Sjogren, W.L., and Yuan, D.N., Recent gravity models as a result of the Lunar Prospector mission, Icarus, 2001, vol. 150, pp. 1–18.

    Article  ADS  Google Scholar 

  • Kronrod, V.A. and Kuskov, O.L., The way to determine chemical composition, temperature and radius of lunar core according to geophysical data, Geokhimiya, 1997, no. 2, pp. 134–142.

    Google Scholar 

  • Kronrod, V.A. and Kuskov, O.L., Inversion of seismic and gravity data for the composition and core sizes of the Moon, Izv. Phys. Solid Earth, 2011, vol. 47, No. 8, pp. 711–730.

    Article  ADS  Google Scholar 

  • Kronrod, V.A., Kronrod, E.V., and Kuskov, O.L., Constraints on the thermal regime and uranium content at the Moon according to seismic data, Dokl. Akad. Nauk, 2014, vol. 455, no. 6, pp. 698–702.

    Google Scholar 

  • Kuskov, O.L., Shapkin, A.I., and Sidorov, Yu.I., On the possibility of hydrosilicates existence in lunar mantle, Geokhimiya, 1995, no. 11, pp. 1539–1550.

    Google Scholar 

  • Kuskov, O.L., Constitution of the Moon: 4. Composition of the mantle from seismic data, Phys. Earth Planet. Int., 1997, vol. 102, pp. 239–257.

    Article  ADS  Google Scholar 

  • Kuskov, O.L. and Kronrod, V.A., Constitution of the Moon: 5. Constraints on composition, density, temperature, and radius of a core, Phys. Earth Planet Int., 1998, vol. 107, pp. 285–306.

    Article  ADS  Google Scholar 

  • Kuskov, O.L. and Kronrod, V.A., The Moon: Chemical composition and internal structure, Solar Syst. Res., 1999, vol. 33, pp. 382–391.

    ADS  Google Scholar 

  • Kuskov, O.L., Kronrod, V.A., and Hood, L.L., Geochemical constraints on the seismic properties of the lunar mantle, Phys. Earth Planet. Int., 2002, vol. 134, pp. 175–189.

    Article  ADS  Google Scholar 

  • Kuskov, O.L., Dorofeeva, V.A., Kronrod, V.A., and Makalkin, A.B., Sistemy Yupitera i Saturna: formirovanie, sostav i vnutrennee stroenie krupnykh sputnikov (Jupiterian and Saturnian Systems: Formation, Composition and Internal Structure of Large Satellites), Moscow: LKI, 2009.

    Google Scholar 

  • Kuskov, O.L. and Kronrod, V.A., Geochemical constraints on the model of the composition and thermal conditions of the Moon according to seismic data, Izv. Phys. Solid Earth, 2009, vol. 45, pp. 753–768.

    Article  ADS  Google Scholar 

  • Kuskov, O.L., Kronrod, V.A., Prokof’ev, A.A., and Pavlenkova, N.I., Petrological-geophysical models of the internal structure of the lithospheric mantle of the Siberian Craton, Petrology, 2014, vol. 22, pp. 17–44.

    Article  Google Scholar 

  • Laneuville, M., Wieczorek, M.A., Breuer, D., and Tosi, N., Asymmetric thermal evolution of the Moon, J. Geophys. Res. Planets., 2013, vol. 118, pp. 1435–1452. doi: 10.1002/jgre.20103

    Article  ADS  Google Scholar 

  • Lognonné P., Gagnepain-Beyneix, J., and Chenet, H., A new seismic model of the Moon: implications for structure, thermal evolution and formation of the Moon, Earth Planet. Sci. Lett., 2003, vol. 211, pp. 27–44.

    Article  ADS  Google Scholar 

  • Lognonné, P., Planetary seismology, Annu. Rev. Earth Planet., 2005, vol. 33, pp. 571–604.

    Article  ADS  Google Scholar 

  • Lognonné, P. and Johnson, C.L., Planetary seismology, Treatise Geophys., Planets Moons, 2007, vol. 10, pp. 69–122.

    Article  Google Scholar 

  • Longhi, J., Petrogenesis of picritic mare magmas: constraints on the extent of early lunar differentiation, Geochim. Cosmochim. Acta, 2006, vol. 70, pp. 5919–5934.

    Article  ADS  Google Scholar 

  • Maaløe, S., The solidus of harzburgite to 3 GPa pressure: the compositions of primary abyssal tholeiite, Miner. Petrol., 2004, vol. 81, pp. 1–17.

    Article  Google Scholar 

  • McDonough, W.F., Constraints on the composition of the continental lithospheric mantle, Earth Planet. Sci. Lett., 1990, vol. 101, pp. 1–18.

    Article  ADS  Google Scholar 

  • McDonough, W.F. and Sun, S.-S., The composition of the Earth, Chem. Geol., 1995, vol. 120, pp. 223–253.

    Article  Google Scholar 

  • Morgan, J.W., Hertogen, J., and Anders, E., The Moon: composition determined by nebula processes, Moon Planets, 1978, vol. 18, pp. 465–478.

    Article  ADS  Google Scholar 

  • Nakamura, Y. and Koyama, J., Seismic Q of the lunar upper mantle, J. Geophys. Res., 1982, vol. 87, pp. 4855–4861.

    Article  ADS  Google Scholar 

  • Nakamura, Y., Seismic velocity structure of the lunar mantle, J. Geophys. Res., 1983, vol. 88, pp. 677–686.

    Article  ADS  Google Scholar 

  • Nazarov, M.A., Aranovich, L.Ya., Demidova, S.I., Ntaflos, T., and Brandstaetter, F., Aluminum enstatites from lunar meteorites and Moon deep rocks, Petrologiya, 2011, vol. 19, no. 1, pp. 14–26.

    Google Scholar 

  • O’Neill, H.St.C., The origin of the Moon and the early history of the Earth — a chemical model. Part 1: the Moon, Geochim. Cosmochim. Acta, 1991, vol. 55, pp. 1135–1157.

    Article  ADS  Google Scholar 

  • Ringwood, A.E. and Essene, E., Petrogenesis of Apollo 11 basalts, internal constitution and origin of the Moon, Proc. 11th Apollo Lunar Sci. Conf., 1970, vol. 1, pp. 769–799.

    ADS  Google Scholar 

  • Ringwood, A.E., Basaltic magmatism and the bulk composition of the Moon. I. Major and heat-producing elements, The Moon, 1977, vol. 16, pp. 389–423.

    Article  ADS  Google Scholar 

  • Robinson, K.L. and Taylor, G.J., Heterogeneous distribution of water in the Moon, Nature Geosci., 2014, vol. 7, pp. 401–408.

    Article  ADS  Google Scholar 

  • Saito, Y., Tanaka, S., Takita, J., Horai, K., and Hagermann, A., Lost Apollo heat flow data suggests a different bulk lunar composition, Proc. 37th Lunar and Planet. Sci. Conf., Houston, 2007, abs. 2197.

    Google Scholar 

  • Shearer, C.K., Hess, P.C., Wieczorek, M.A., Pritchard, M.E., Parmentier, E.M., Borg, L.E., Longhi, J., Elkins-Tanton, L.T., Neal, C.R., Antonenko, I., Canup, R.M., Halliday, A.N., Grove, T.L., Hager, B.H., Lee, D.-C., and Wiechert, U., Thermal and magmatic evolution of the Moon, Rev. Mineral. Geochem., 2006, vol. 60, pp. 365–518.

    Article  Google Scholar 

  • Siegler, M.A. and Smrekar, S.E., Lunar heat flow: regional prospective of the Apollo landing sites, J. Geophys. Res.: Planets, 2014, vol. 119, pp. 47–63. doi: 10.1002/2013JE004453

    Article  ADS  Google Scholar 

  • Taylor, S.R., Planetary Science: A Lunar Perspective, Houston: LPI, 1982.

    Google Scholar 

  • Taylor, S.R., Taylor, G.J., and Taylor, L.A., The Moon: a Taylor perspective, Geochim. Cosmochim. Acta, 2006, vol. 70, pp. 5904–5918.

    Article  ADS  Google Scholar 

  • Thacker, C., Liang, Y., Peng, Q., and Hess, P.C., The stability and major element partitioning of ilmenite and armalcolite during lunar cumulate mantle overturn, Geochim. Cosmochim. Acta, 2009, vol. 73, pp. 820–836.

    Article  ADS  Google Scholar 

  • Toksöz, M.N., Hsui, A.T., and Johnston, D.H., Thermal evolutions of the terrestrial planets, Moon Planets, 1978, vol. 18, pp. 281–320.

    Article  ADS  Google Scholar 

  • Wänke, H. and Dreibus, G., Geochemical evidence for the formation of the Moon by impactinduced fission of the proto-Earth, in Origin of the Moon, Hartmann, W.K., et al., Eds., Houston: LPI, 1986, pp. 649–672.

    Google Scholar 

  • Warren, P.H. and Rasmussen, K.L., Megaregolith insulation, internal temperatures, and bulk uranium content of the Moon, J. Geophys. Res., 1987, vol. 92(B5), pp. 3453–3465.

    Article  ADS  Google Scholar 

  • Warren, P.H., “New” lunar meteorites: implications for composition of the global lunar surface, lunar crust, and the bulk Moon, Meteorit. Planet. Sci., 2005, vol. 40, pp. 477–506.

    Article  ADS  Google Scholar 

  • Weber, R.C., Lin, P., Garnero, E.J., Williams, Q., and Lognonné, P., Seismic detection of the lunar core, Science, 2011, vol. 331, pp. 309–312.

    Article  ADS  Google Scholar 

  • Wieczorek, M.A., Jolliff, B.J., Khan, A., Pritchard, M.E., Weiss, B.J., Williams, J.G., Hood, L.L., Righter, K., Neal, C.R., Shearer, C.K., McCallum, I.S., Tompkins, S., Hawke, B.R., Peterson, C., Gillis, J.J., and Bussey, B., The constitution and structure of the lunar interior, Rev. Mineral. Geochem., 2006, vol. 60, pp. 221–364.

    Article  Google Scholar 

  • Wieczorek, M.A., Neumann, G.A., Nimmo, F., Kiefer, W.S., Taylor, G.J., Melosh, H.J., Phillips, R.J., Solomon, S.C., Andrews-Hanna, J.C., Asmar, S.W., Konopliv, A.S., Lemoine, F.G., Smith, D.E., Watkins, M.M., Williams, J.G., and Zanduber, M.T., The crust of the Moon as seen by GRAIL, Science, 2013, vol. 339, no. 6120, pp. 671–675.

    Article  ADS  Google Scholar 

  • Williams, J.G., Boggs, D.H., Yoder, C.F., Ratcliff, J.T., and Dickey, J.O., Lunar rotational dissipation in solid body and molten core, J. Geophys. Res., 2001, vol. 106, pp. 27933–27968.

    Article  ADS  Google Scholar 

  • Williams, J.G., Konopliv, A.S., Boggs, D.H., Park, R.S., Yuan, D.-N., Lemoine, F.G., Goossen, S., Mazarico, E., Nimmo, F., Weber, R.C., Asmar, S.W., Melosh, H.J., Neumann, G.A., Phillips, R.J., Smith, D.E., Solomon, S.C., Watkins, M.M., Wieczorek, M.A., Andrews-Hanna, J.C., Head, J.W., Kiefer, W.S, Matsuyama, I., McGovern, P.J., Taylor, G.J., and Zuber, M.T., Lunar interior properties from the GRAIL mission, J. Geophys. Res. Planets, 2014, vol. 119, pp. 1546–1578. doi: 10.1002/2013JE004559

    Article  ADS  Google Scholar 

  • Zhang, N., Parmentier, E.M., and Liang, Y., A 3D numerical study of the thermal evolution of the Moon after cumulate mantle overturn: the importance of rheology and core solidification, J. Geophys. Res. Planets, 2013, vol. 118, pp. 1789–1804. doi: 10.1002/jgre.20121

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. L. Kuskov.

Additional information

Original Russian Text © O.L. Kuskov, V.A. Kronrod, E.V. Kronrod, 2015, published in Astronomicheskii Vestnik, 2015, Vol. 49, No. 2, pp. 83–99.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuskov, O.L., Kronrod, V.A. & Kronrod, E.V. Thermochemical constraints on the thermal state, composition, and mineralogy of the upper mantle of the Moon: Evidence from the seismic models. Sol Syst Res 49, 75–91 (2015). https://doi.org/10.1134/S0038094615010049

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0038094615010049

Keywords

Navigation