Geological context of potential landing site of the Luna-Glob mission

Abstract

The region planned for performing the Luna-Glob mission is located in the southern part of the swell surrounding the largest South Pole-Aitken (SPA) basin. The photogeological analysis of the surface topography of this region using the LRO-WAC (resolution of 100 Mpxl) photomaps made it possible to define the following groups of morphological units (area types): (1) related to the formation of relatively fresh impact craters; (2) associated with larger (>100 km across) degraded craters including (2a) external and (2b) inner facies; and (3) occupying intercrater spaces. The comparison of the geological map with the map illustrating the distribution of the epithermal neutron flow (Mitrofanov et al., 2012) shows no correlation between them. Consequently, one should not expect development of rock complexes, which would be characterized by elevated concentrations of water in the region chosen for the Luna-Glob mission and, thus, considered among the first-priority targets. The comparison of the neutron flow distribution with the map of circular polarization of the Mini-RF radar beam also shows no correlation. This means that high values of circular polarization reflect elevated concentrations of rock fragments rather than water accumulations. Even though ice fragments are present, their sizes should only slightly be less as compared with the radar wavelength (12.6 cm). The region planned for investigations in the scope of the Luna-Glob mission corresponds to the swell of the largest (and, likely, oldest) preserved basin and offers a potential opportunity to analyze ancient material of this planet and introduce important constraints into the spectrum of models proposed for explaining the Moon’s origin.

This is a preview of subscription content, access via your institution.

References

  1. Arnold, J.R., Ice in the lunar polar region, J. Geophys. Res., 1979, vol. 84, pp. 5659–5668.

    ADS  Article  Google Scholar 

  2. Basilevsky, A.T., Abdrakhimov, A.M., and Dorofeeva, V.A., Water and other volatiles on the Moon: a review, Solar Syst. Res., 2012, vol. 46, no. 2, pp. 89–107.

    ADS  Article  Google Scholar 

  3. Boynton, W.V., Droege, G.F., Mitrofanov, I.G., McClanahan, T.P., Sanin, A.B., Litvak, M.L., Schaffner, M., Chin, G., Evans, L.G., Garvin, J.B., Harshman, K., Malakhov, A., Milikh, G., Sagdeev, R., and Starr, R., High spatial resolution studies of epithermal neutron emission from the lunar poles: constraints on hydrogen mobility, J. Geophys. Res., 2012, vol. 117, p. E00H33. doi: 10.1029/2011JE003979

    ADS  Google Scholar 

  4. Bussey, D.B.J., McGovern, J.A., Spudis, P.D., Neis, C.D., Noda, H., Ishihara, Y., and Sorensen, S.-A., Illumination conditions of the South Pole of the Moon derived using Kaguya topography, Icarus, 2010, vol. 208, pp. 558–564.

    ADS  Article  Google Scholar 

  5. Bussey, D.B.J., Spudis, P.D., and the Mini-RF Team, New insights into lunar processes and history from global mapping by Mini-RF radar, Proc. Lunar and Planet. Sci. Conf., Houston, 2011, vol. 42, Abstract no. 2086.

  6. Colaprete, A., Schultz, P., Heldmann, J., Wooden, D., Shirley, M., Ennico, K., Hermalyn, B., Marshall, W., Ricco, A., Elphic, R.C., Goldstein, D., Summy, D., Bart, G.D., Asphaug, E., Korycansky, D., Landis, D., and Sollitt, L., Detection of water in the LCROSS ejecta plume, Science, 2010, vol. 330, pp. 463–468.

    ADS  Article  Google Scholar 

  7. Crider, D.H. and Vondrak, R.R., The solar wind as a possible source of lunar polar hydrogen deposits, J. Geophys. Res., 2000, vol. 105, pp. 26773–26782.

    ADS  Article  Google Scholar 

  8. Feldman, W.C., Maurice, S., Binder, A.B., Barraclough, B.L., Elphic, R.C., and Lawrence, D.J., Fluxes of fast and epithermal neutrons from lunar prospector: evidence for water ice at the lunar poles, Science, 1998, vol. 281, pp. 1496–1500.

    ADS  Article  Google Scholar 

  9. Feldman, W.C., Lawrence, D.J., Elphic, R.C., Barraclough, B.L., Maurice, S., Genetay, I., and Binder, A.B., Polar hydrogen deposits on the Moon, J. Geophys. Res., 2000, vol. 105, pp. 4175–4195.

    ADS  Article  Google Scholar 

  10. Feldman, W.C., Maurice, S., Lawrence, D.J., Little, R.C., Lawson, S.L., Gasnault, O., Wiens, R.C., Barraclough, B.L., Elphic, R.C., Prettyman, T.H., Steinberg, J.T., and Binder, A.B., Evidence for water ice near the lunar poles, J. Geophys. Res., 2001, vol. 106, pp. 23231–23252.

    ADS  Article  Google Scholar 

  11. Garrick-Bethell, I. and Zuber, M.T., Elliptical structure of the lunar South Pole-Aitken basin, Icarus, 2009, vol. 204, pp. 399–408.

    ADS  Article  Google Scholar 

  12. Hiesinger, H. and Head, J.W., Lunar South Pole-Aitken impact basin: topography and mineralogy, Proc. Lunar and Planet. Sci. Conf., Houston, 2004, vol. 34, Abstract no. 1164.

  13. Hiesinger, H., van der Bogert, C.H., Pasckert, J.H., Schmedemann, N., Robinson, M.S., Jolliff, B., and Petro, N., New crater size-frequency distribution measurements of the South Pole-Aitken basin, Proc. Lunar and Planet. Sci. Conf., Houston, 2012, vol. 43, Abstract no. 2863.

  14. Klima, R.L., Lawrence, D.J., Cahill, T.S., and Hagerty, J., Bullialdus crater: correlation between KREEP and local mineralogy, Proc. Lunar and Planet. Sci. Conf., 2012, vol. 43, Abstract no. 2517.

  15. Leikin, G.A. and Sanovich, A.N., Southern basin formation at the opposite part of the Moon, Astron. Vestn., 1985, vol. 19, no. 2, pp. 113–119.

    ADS  Google Scholar 

  16. Mitrofanov, I.G., Sanin, A.B., Boynton, W.V., Chin, G., Garvin, J.B., Golovin, D., Evans, L.G., Harshman, K., Kozyrev, A.S., Litvak, M.L., Malakhov, A., Mazarico, E., McClanahan, T., Milikh, G., Mokrousov, M., Nandikotkur, G., Neumann, G.A., Nuzhdin, I., Sagdeev, R., Shevchenko, V., Shvetsov, V., Smith, D.E., Starr, R., Tretyakov, V.I., Trombka, J., Usikov, D., Varenikov, A., Vostrukhin, A., and Zuber, M.T., Hydrogen mapping of the lunar South Pole using the LRO neutron detector experiment LEND, Science, 2010, vol. 330, pp. 483–486.

    ADS  Article  Google Scholar 

  17. Mitrofanov, I., Litvak, M., Sanin, A., Malakhov, A., Golovin, D., Boynton, W., Droege, G., Chin, G., Evans, L., Harshman, K., Fedosov, F., Garvin, J., Kozyrev, A., McClanahan, T., Milikh, G., Mokrousov, M., Starr, R., Sagdeev, R., Shevchenko, V., Shvetsov, V., Tret’yakov, V., Trombka, J., Varenikov, A., and Vostrukhin, A., Testing polar spots of water-rich permafrost on the Moon: LEND observations onboard LRO, J. Geophys. Res., 2012, vol. 117, no. 27, p. E00H27. doi: 10.1029/2011JE003956

    ADS  Google Scholar 

  18. Nozette, S., Spudis, P., Bussey, B., Jensen, R., Raney, K., Winters, H., Lichtenberg, C.L., Marinelli, W., Crusan, J., Gates, M., and Robinson, M., The Lunar Reconnaissance Orbiter Miniature Radio Frequency (Mini-RF) technology demonstration, Space Sci. Rev., 2010, vol. 150, pp. 285–302.

    ADS  Article  Google Scholar 

  19. Oberbeck, V.R., Hörz F., Morrison, R.H., Quaide, W.L., and Gault, D.E., On the origin of the lunar smoothplains, Moon, 1975, vol. 12, pp. 19–54.

    ADS  Article  Google Scholar 

  20. Sanin, A., Mitrofanov, I., Boynton, W., Chin, G., Demidov, N., Garvin, J., Golovin, D., Evans, L., Harshman, K., Kozyrev, A., Litvak, M., Malakhov, A., McClanahan, T., Milikh, G., Mokrousov, M., Nandikotkur, G., Nuzhdin, I., Sagdeev, R., Shevchenko, V., Shvetsov, V., Starr, R., Tretyakov, V., Trombka, J., Usikov, D., Varennikov, A., and Vostrukhin, A., Mapping of lunar hydrogen according to the LEND neutron measurements onboard the NASA LRO, Proc. Lunar and Planet. Sci. Conf., Houston, 2010, vol. 41, Abstract no. 2437.

  21. Sanin, A.B., Mitrofanov, I.G., Litvak, M.L., Malakhov, A., Boynton, W.V., Chin, G., Droege, G., Evans, L.G., Garvin, J., Golovin, D.V., Harshman, K., McClanahan, T.P., Mokrousov, M.I., Mazarico, E., Milikh, G., Neumann, G., Sagdeev, R., Smith, D.E., Starr, R.D., and Zuber, M.T., Testing lunar permanently shadowed regions for water ice: LEND results from LRO, J. Geophys. Res., 2012, vol. 117, no. 26, p. E00H26. doi: 10.1029/2011JE003971

    ADS  Google Scholar 

  22. Shevchenko, V.V., Chikmachev, V.I., and Pugacheva, S.G., Structure of the South Pole-Aitken lunar basin, Solar Sys. Res., 2007, vol. 41, pp. 447–462.

    ADS  Article  Google Scholar 

  23. Smith, D.E., Zuber, M.T., Jackson, G.B., Cavanaugh, J.F., Neumann, G.A., Riris, H., Sun, X., Zellar, R.S., Coltharp, C., Connelly, J., Katz, R.B., Kleyner, S., Liiva, P., Matuszeski, A., Mazarico, E.M., McGarry, J.F., Novo-Gradac, A.-M., Ott, Me.N., Peters, C., Ramos-Izquierdo, L.A., Ramsey, L., Rowlands, D.D., Schmidt, S., Scott, V.S., Shaw, G.B., Smith, J.C., Swinski, J.-P., Torrence, M.H., Unger, G., Yu, A.W., and Zagwodzki, T.W., Initial observations from the Lunar Orbiter Laser Altimeter (LOLA), Geophys. Rev. Lett., 2010, vol. 37, p. L18204. doi: 10.1029/2010GL043751

    ADS  Google Scholar 

  24. Spudis, P., Nozette, S., Bussey, B., Raney, K., Winters, H., Lichtenberg, C.L., Marinelli, W., Crusan, J.C., and Gates, M.M., Mini-SAR: an imaging radar experiment for the Chandrayaan-1 mission to the Moon, Curr. Sci., 2009, vol. 96, pp. 533–539.

    Google Scholar 

  25. Spudis, P.D., Bussey, D.B.J., Baloga, S.M., Butler, B.J., Carl, D., Carter, L.M., Chakraborty, M., Elphic, R.C., Gillis-Davis, J.J., Goswami, J.N., Heggy, E., Hillyard, M., Jensen, R., Kirk, R.L., LaVallee, D., McKerracher, P., Neish, C.D., Nozette, S., Nylund, S., Palsetia, M., Patterson, W., Robinson, M.S., Raney, R.K., Schulze, R.C., Sequeira, H., Skura, J., Thompson, T.W., Thomson, B.J., Ustinov, E.A., and Winters, H.L., Initial results for the north pole of the Moon from Mini-SAR Chandrayaan-1 mission, Geophys. Rev. Lett., 2010, vol. 37, p. L06204. doi: 10.1029/2009GL042259

    ADS  Article  Google Scholar 

  26. Starukhina, L.V. and Shkuratov, Yu.G., The lunar poles: water ice or chemically trapped hydrogen?, Icarus, 2000, vol. 147, pp. 585–587.

    ADS  Article  Google Scholar 

  27. Stewart-Alexander, D.E., Geological map of the central far side of the Moon, USGS Map I-1047, 1978.

    Google Scholar 

  28. Watson, K., Murray, B.S., and Brown, H., The behavior of volatiles on the lunar surface, J. Geophys. Res., 1961, vol. 66, no. 9, pp. 3033–3045.

    ADS  Article  Google Scholar 

  29. Wilhelms, D.E., Geologic mapping of the second planet. Part 1: Rationale and general methods of lunar geologic mapping, in A Primer in Lunar Geology, Greeley, R. and Schultz, P., Eds., Ames Res. Center NASA, 1974, pp. 199–215.

    Google Scholar 

  30. Wilhelms, D.E., Howard, K.A., and Wilshire, H.G., Geologic map of the south side of the Moon, USGS Map I-1192, 1979.

    Google Scholar 

  31. Wilhelms, D.E., The geologic history of the Moon, USGS Spec. Pap. no. 1348, 1987.

    Google Scholar 

  32. Zelenyi, L.M., Khartov, V.V., Mitrofanov, I.G., and Skalsky, A.A., “Luna-Glob” and “Luna-Resource” missions, Proc. 1st Moscow Solar System Symp., Moscow, 2010. http://ms2010.cosmos.ru/pres/3/zelenyi_luna.ppt

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. A. Ivanov.

Additional information

Original Russian Text © M.A. Ivanov, A.M. Abdrakhimov, A.T. Basilevsky, J.L. Dixon, J.W. Head, L. Chick, J. Vitten, M.T. Zuber, D.E. Simt, E. Mazarico, C.D. Neish, D.B.J. Bassey, 2014, published in Astronomicheskii Vestnik, 2014, Vol. 48, No. 6, pp. 423–435.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ivanov, M.A., Abdrakhimov, A.M., Basilevsky, A.T. et al. Geological context of potential landing site of the Luna-Glob mission. Sol Syst Res 48, 391–402 (2014). https://doi.org/10.1134/S0038094614060021

Download citation

Keywords

  • Solar System Research
  • Morphological Unit
  • Lunar Reconnaissance Orbiter
  • Large Crater
  • Secondary Crater