CHOMIK: a multi-method approach for studying Phobos

Abstract

CHOMIK is the name of a penetrator constructed for sampling and retrieval of Phobos surface material. It formed an integral part of the Phobos Sample Return Mission. In this paper we present its construction and intended mode of operation, since the concept is still viable for future missions either to Phobos or to other small bodies of similar dimensions. We take Phobos as an example to describe the science case for such an instrument and how it might be utilized to resolve important open issues regarding the origin of the Martian moons. Concerning the latter, we place emphasis on measurement techniques and analysis tools for mapping trace element concentrations in returned sample.

This is a preview of subscription content, access via your institution.

References

  1. Bibring, J.-P., Phobos origin: a reappraisal, in Proc. European Planetary Sci. Congress, Rome, 2010, vol. 5, p. 554.

    ADS  Google Scholar 

  2. Bibring, J.-P., Gondet, B., and Pilorget, C., Phobos composition and origin: from OMEGA to MicrOmega, in Proc. European Planetary Science Congress, Nantes, 2011, vol. 6, pp. 510–511.

    ADS  Google Scholar 

  3. Bland, P.A., Alard, O., Gounelle, M., and Rogers, N.W., Trace element variation in carbonaceous chondrite matrix, in Proc. 34th Lunar Planet. Sci. Conf., Houston, 2003, Abstract no. 1750.

    Google Scholar 

  4. Campins, H., Hargrove, K., Pinilla-Alonso, N., et al., Water ice and organics on the surface of the asteroid 24 Themis, Nature, 2010, vol. 464, pp. 1320–1321.

    ADS  Article  Google Scholar 

  5. Carslaw, H.S. and Jaeger, J.C., Conduction of Heat in Solids, Oxford Univ. Press, 1959.

    Google Scholar 

  6. Craddock, R.A., Are Phobos and Deimos the result of a giant impact?, Icarus, 2011, vol. 211, pp. 1150–1161.

    ADS  Article  Google Scholar 

  7. Dauphas, N. and Pourmand, A., Hf-W-Th evidence for rapid growth of Mars and its status as a planetary embryo, Nature, 2011, vol. 473, pp. 489–492.

    ADS  Article  Google Scholar 

  8. Davidsson, B.J.R., Gutiérrez, P., and Rickman, H., Physical properties of morphological units on Comet 9P/Tempel 1 derived from near-IR deep impact spectra, Icarus, 2009, vol. 201, pp. 335–357.

    ADS  Article  Google Scholar 

  9. Domonik, A., Słaby, E., and Śmigielski, M., The Hurst exponent as a tool for the description of magma field heterogeneity reflected in the geochemistry of growing crystals, Acta Geol. Polon., 2010, vol. 60, pp. 437–443.

    Google Scholar 

  10. Friedrich, J.M., Wang, M.-S., and Lipschutz, M.E., Comparison of the trace element composition of Tagish Lake with other primitive carbonaceous chondrites, Meteorit. Planet. Sci., 2002, vol. 37, pp. 677–686.

    ADS  Article  Google Scholar 

  11. Gendrin, A., Langevin, Y., and Erard, S., ISM observation of Phobos reinvestigated: identification of a mixture of olivine and low-calcium pyroxene, J. Geophys. Res., 2005, vol. 110, p. E04014.

    ADS  Google Scholar 

  12. Gondet, B., Bibring, J.-P., Langevin, Y., and the OMEGA Sci. Team, Phobos observations by OMEGA/Mars Express hyperspectral imager, in Proc. European Planetary Science Congress, Rome, 2010, vol. 5, p. 548.

    ADS  Google Scholar 

  13. Groussin, O., A’Hearn, M.F., Li, J.-Y., et al., Surface temperature of the nucleus of Comet 9P/Tempel 1, Icarus, 2007, vol. 187, pp. 16–25.

    ADS  Article  Google Scholar 

  14. Grygorczuk, J., Banaszkiewicz, M., Seweryn, K., and Spohn, T., MUPUS insertion device for Rosetta mission, J. Telecommun. Inf. Tech., 2007, vol. 1, pp. 50–53.

    Google Scholar 

  15. Hsieh, H.H. and Jewitt, D., A population of comets in the main asteroid belt, Science, 2006, vol. 312, pp. 561–563.

    ADS  Article  Google Scholar 

  16. Ivanov, A.V., Is the Kaidun meteorite a sample from Phobos?, Solar Syst. Res., 2004, vol. 38, pp. 97–107.

    ADS  Article  Google Scholar 

  17. Ivanov, A.V., Ivanova, M.A., and Kononkova, N.N., Concentrically zonal textures in a sample of the Kaidun meteorite, Geochem. Int., 2007, vol. 45, pp. 957–970.

    Article  Google Scholar 

  18. Ivanov, A.V., Kononkova, N.N., and Zolensky, M.E., Pegmatoid objects in a sample of the Kaidun meteorite, Geochem. Int., 2008, vol. 46, pp. 759–774.

    Article  Google Scholar 

  19. Jewitt, D., The active asteroids, Astron. J., 2012, vol. 143, Article no. 66.

  20. Murchie, S., Mars Pathfinder spectral measurements of Phobos and Deimos: comparison with previous data, J. Geophys. Res., 1999, vol. 104, pp. 9069–9080.

    ADS  Article  Google Scholar 

  21. Murchie, S., Choo, T., Humm, D., et al., MRO/CRISM observations of Phobos and Deimos, in Proc. 34th Lunar Planet. Sci. Conf., Houston, 2008, p. 1434.

    Google Scholar 

  22. Pajola, M., Lazzarin, M., Bertini, I., et al., Spectrophotometry investigation of Phobos with the OSIRIS-NAC camera onboard the Rosetta spacecraft, Mon. Notic. Roy. Astron. Soc., 2012, vol. 427, no. 4, pp. 3230–3243.

    ADS  Article  Google Scholar 

  23. Pollack, J.B., Veverka, J., Pang, K.D., et al., Multicolor observations of PHOBOS with the Viking lander cameras-evidence for a carbonaceous chondritic composition, Science, 1978, vol. 199, pp. 66–69.

    ADS  Article  Google Scholar 

  24. Raymond, S.N., O’Brien, D.P., Morbidelli, A., and Kaib, N.A., Building the terrestrial planets: constrained accretion in the inner Solar System, Icarus, 2009, vol. 203, pp. 644–662.

    ADS  Article  Google Scholar 

  25. Rivkin, A.S. and Emery, J.P., Detection of ice and organics on an asteroidal surface, Nature, 2010, vol. 464, pp. 1322–1323.

    ADS  Article  Google Scholar 

  26. Saby, E., Śmigielski, M., Śmigielski, T., et al., Chaotic three-dimensional distribution of Ba, Rb, and Sr in feldspar megacrysts grown in an open magmatic system, Contribut. Mineral. Petrol., 2011, vol. 162, pp. 909–927.

    ADS  Article  Google Scholar 

  27. Saby, E., Martin, H., Hamada, M., et al., High temperature fluid interaction with Archaean alkali feldspar megacrysts: a multi-method approach, J. Petrol., 2012, vol. 53, pp. 67–98.

    Article  Google Scholar 

  28. Śmigielski, M., Słaby, E., and Domonik, A., Digital concentration-distribution models-tools for a description of the heterogeneity of the magmatic field as reflected in the geochemistry of a growing crystal, Acta Geol. Polon., 2012, vol. 62, pp. 129–141.

    Google Scholar 

  29. Wolf, S.F., Unger, D.L., and Friedrich, J.M., Determination of cosmochemically volatile trace elements in chondritic meteorites by inductively coupled plasma mass spectrometry, Anal. Chim. Acta, 2005, vol. 528, pp. 121–128.

    Article  Google Scholar 

  30. Zolensky, M. and Ivanov, A., The Kaidun microbreccia meteorite: a harvest from the inner and outer asteroid belt, Chem. Erde, 2003, vol. 63, pp. 185–246.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to H. Rickman.

Additional information

The article is published in the original.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rickman, H., Słaby, E., Gurgurewicz, J. et al. CHOMIK: a multi-method approach for studying Phobos. Sol Syst Res 48, 279–286 (2014). https://doi.org/10.1134/S0038094614040091

Download citation

Keywords

  • Solar System Research
  • Carbonaceous Chondrite
  • Trace Element Pattern
  • Asteroid Belt
  • Multi Method Approach