Solar System Research

, Volume 48, Issue 2, pp 139–157 | Cite as

Jupiter’s Trojans: Physical properties and origin

  • I. G. Slyusarev
  • I. N. Belskaya


The current concepts on the physical properties of the Jovian Trojans are reviewed in the paper. The distributions of rotation periods and light-curve amplitudes, the features of the phase dependencies of brightness, and the available data on the surface composition, density, diameters, and albedo of the Trojans are analyzed. The history of the discovery of Trojans, their dynamical properties, and the hypotheses on their origin are also briefly considered. A framework of the unsolved problems in the study of this population of small bodies is outlined.


Solar System Light Curve Solar System Research Libration Point Semimajor Axis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abdul’myanov, T.R. and Zagretdinov, R.V., Asteroids libration motion near mean motions commensurability. Intermediate orbits, Kinemat. Fiz. Nebesn. Tel, 1994, vol. 4, pp. 34–43.Google Scholar
  2. Alexandersen, M., Gladman, B., Greenstreet, S., Kavelaars, J.J., Petit, J.-M., and Gwyn, S., A Uranian Trojan and the frequency of temporary giant-planet coorbitals, Science, 2013, vol. 341, pp. 994–997.ADSGoogle Scholar
  3. Barucci, M.A., Cruikshank, D.P., Mottola, S., and Lazzarin, M., Physical properties of Trojan and Centaur asteroids, in Asteroids III, Bottke, W.F., Jr., Ed., Tucson: Univ. Arizona Press, 2002, pp. 273–287.Google Scholar
  4. Beaugé, C. and Roig, F.A., Semianalytical model for the motion of the Trojan asteroids: proper elements and families, Icarus, 2001, vol. 153, pp. 391–415.ADSGoogle Scholar
  5. Belskaya, I.N., Surface optical properties for asteroids, Centauruses and Kuiper belt bodies surfaces, Doctoral Sci. (Phys.-Math.) Dissertation, Kharkov, 2007.Google Scholar
  6. Bendjoya, P., Cellino, A., Di Martino, D., and Saba, L., Spectroscopic observations of Jupiter Trojans, Icarus, 2004, vol. 168, pp. 374–384.ADSGoogle Scholar
  7. Binzel, R.P. and Sauter, L.M., Trojan, Hilda, and Cybele asteroids: new lightcurve observations and analysis, Icarus, 1992, vol. 95, pp. 222–238.ADSGoogle Scholar
  8. Bowell, E., Hapke, B., and Domingue, D., Application of photometric models to asteroids, in Asteroids II, Binzel, R.P., et al., Eds., Tucson: Univ. Arizona Press, 1989, pp. 524–556.Google Scholar
  9. Chapman, C.R., Morrison, D., and Zellner, B., Surface properties of asteroids-a synthesis of polarimetry, radiometry, and spectrophotometry, Icarus, 1975, vol. 25, pp. 104–130.ADSGoogle Scholar
  10. Chebotarev, G.A., New types of motions for Trojan group planets, Astron. Zh., 1973, vol. 50, no. 5, pp. 1071–1075.ADSGoogle Scholar
  11. Chiang, E.I., Jordan, A.B., Millis, R.L., et al., Resonance occupation in the Kuiper Belt: case examples of the 5: 2 and Trojan resonances, Astron. J., 2003, vol. 126, pp. 430–443.ADSGoogle Scholar
  12. Ciesla, F.J. and Cuzzi, J.N., The evolution of the water distribution in a viscous protoplanetary disk, Icarus, 2006, vol. 181, pp. 178–204.ADSGoogle Scholar
  13. Connors, M.G., Wiegert, P., and Veillet, C., Discovery of an Earth Trojan asteroid, Nature, 2011, vol. 475, pp. 481–483.ADSGoogle Scholar
  14. Cruikshank, D.P., Radii and albedos of four Trojan asteroids and Jovian satellites 6 and 7, Icarus, 1977, vol. 30, pp. 224–230.ADSGoogle Scholar
  15. Cruikshank, D.P., Dall’Ore, C.M., Roush, T.L., et al., Constraints on the composition of Trojan asteroid 624 Hektor, Icarus, 2001, vol. 153, pp. 348–360.ADSGoogle Scholar
  16. Cruikshank, D.P., Wegryn, E., and Dalle Ore, C.M., Hydrocarbons on Saturn’s satellites Iapetus and Phoebe, Icarus, 2008, vol. 193, pp. 334–343.ADSGoogle Scholar
  17. Dahlgren, M., A study of Hilda asteroids. III. Collisional velocities and collision frequencies of Hilda asteroids, Astron. Astrophys., 1998, vol. 336, pp. 1056–1064.ADSGoogle Scholar
  18. Davis, D.R., Durda, D.D., and Marzari, F., Collisional evolution of small-body populations, in Asteroids III, Bottke, W.F., Jr., Ed., Tucson: Univ. Arizona Press, 2002, pp. 545–558.Google Scholar
  19. Degewij, J. and van Houten, C.J., Distant asteroids and outer Jovian satellites, in Asteroids, Gehrels, T., Ed., Tucson: Univ. Arizona Press, 1979, pp. 417–435.Google Scholar
  20. Descamps, P., Roche figures of doubly synchronous asteroids, Planet. Space Sci., 2008, vol. 56, pp. 1839–1846.ADSGoogle Scholar
  21. Dotto, E., Fornasier, S., Barucci, M.A., et al., The surface composition of Jupiter Trojans, Icarus, 2006, vol. 183, pp. 420–434.ADSGoogle Scholar
  22. Dotto, E., Emery, J.P., Barucci, M.A., et al., De Troianis: the Trojans in the planetary system, in The Solar System beyond Neptune, Barucci, M.A., Ed., Tucson: Univ. Arizona Press, 2008, pp. 383–395.Google Scholar
  23. Dumas, C., Owen, T., and Barucci, M.A., Near-infrared spectroscopy of low-albedo surfaces of the solar system: search for the spectral signature of dark material, Icarus, 1998, vol. 133, pp. 221–232.ADSGoogle Scholar
  24. Dunlap, J.L. and Gehrels, T., Minor planets. III. Light-curves of a Trojan asteroid, Astron. J., 1969, vol. 74, pp. 797–803.Google Scholar
  25. Emery, J.P. and Brown, R.H., Constraints on the surface composition of Trojan asteroids from near-infrared (0.8–4.0 μm) spectroscopy, Icarus, 2003, vol. 164, p. 104–121.ADSGoogle Scholar
  26. Emery, J.P. and Brown, R.H., The surface composition of Trojan asteroids: constraints set by scattering theory, Icarus, 2004, vol. 170, pp. 131–152.ADSGoogle Scholar
  27. Emery, J.P., Burr, D.M., and Cruikshank, D.P., Near-infrared spectroscopy of Trojan asteroids: evidence for two compositional groups, Astron. J., 2011, vol. 141, article ID 25.Google Scholar
  28. Fernández, J.A. and Ip, W.-H., Some dynamical aspects of the accretion of Uranus and Neptune—the exchange of orbital angular momentum with planetesimals, Icarus, 1984, vol. 58, pp. 109–120.ADSGoogle Scholar
  29. Fernández, Y.R., Sheppard, S.S., and Jewitt, D.C., The albedo distribution of Jovian Trojan asteroids, Astron. J., 2003, vol. 126, pp. 1563–1574.ADSGoogle Scholar
  30. Fernández, Y.R., Jewitt, D., and Ziffer, J.E., Albedos of small Jovian Trojans, Astron. J., 2009, vol. 138, pp. 240–250.ADSGoogle Scholar
  31. Fitzsimmons, A., Dahlgren, M., Lagerkvist, C.-I., et al., A spectroscopic survey of D-type asteroids, Astron. Astrophys., 1994, vol. 282, pp. 634–642.ADSGoogle Scholar
  32. Fleming, H.J. and Hamilton, D.P., On the origin of the Trojan asteroids: effects of Jupiter’s mass accretion and radial migration, Icarus, 2000, vol. 148, pp. 479–493.ADSGoogle Scholar
  33. Fornasier, S., Dotto, E., Marzari, F., et al., Visible spectroscopic and photometric survey of L5 Trojans: investigation of dynamical families, Icarus, 2004, vol. 172, pp. 221–232.ADSGoogle Scholar
  34. Fornasier, S., Dotto, E., and Hainaut, O., Visible spectroscopic and photometric survey of Jupiter Trojans: final results on dynamical families, Icarus, 2007, vol. 190, pp. 622–642.ADSGoogle Scholar
  35. French, L.M., Rotation properties of four L5 Trojan asteroids from CCD photometry, Icarus, 1987, vol. 72, pp. 325–341.ADSGoogle Scholar
  36. Gomes, R.S., Dynamical effects of planetary migration on the primordial asteroid belt, Astron. J., 1997, vol. 114, pp. 396–401.ADSGoogle Scholar
  37. Gomes, R.S., Dynamical effects of planetary migration on primordial Trojan-type asteroids, Astron. J., 1998, vol. 116, pp. 2590–2597.ADSGoogle Scholar
  38. Gomes, R.S., Morbidelli, A., and Levison, H.F., Planetary migration in a planetesimal disk: why did Neptune stop at 30 AU?, Icarus, 2004, vol. 170, pp. 492–507.ADSGoogle Scholar
  39. Gomes, R., Levison, H.F., Tsiganis, K., and Morbidelli, A., Origin of the cataclysmic late heavy bombardment period of the terrestrial planets, Nature, 2005, vol. 435, pp. 466–469.ADSGoogle Scholar
  40. Gradie, J.C. and Veverka, J., The composition of the Trojan asteroids, Nature, 1980, vol. 283, pp. 840–842.ADSGoogle Scholar
  41. Gradie, J.C. and Tedesco, E.F., Compositional structure of the asteroid belt, Science, 1982, vol. 216, pp. 1405–1407.ADSGoogle Scholar
  42. Grav, T., Mainzer, A.K., Bauer, J., et al., WISE/NEOWISE observations of the Jovian Trojans: preliminary results, Astrophys. J., 2011, vol. 742, pp. 40–49.ADSGoogle Scholar
  43. Hahn, J.M. and Malhotra, R., Orbital evolution of planets embedded in a planetesimal disk, Astron. J., 1999, vol. 117, pp. 3041–3053.ADSGoogle Scholar
  44. Hahn, J.M. and Malhotra, R., Neptune’s migration into a stirred-up Kuiper belt: a detailed comparison of simulations to observations, Astron. J., 2005, vol. 130, pp. 2392–2414.ADSGoogle Scholar
  45. Harris, A.W., A thermal model for near-Earth asteroids, Icarus, 1998, vol. 131, pp. 291–301.ADSGoogle Scholar
  46. Hartmann, W.K. and Cruikshank, D., The nature of Trojan asteroid 624 Hektor, Icarus, 1978, vol. 36, pp. 353–366.ADSGoogle Scholar
  47. Innanen, K.A., Mikkola, S., Bowell, E., Muinonen, K., and Shoemaker, E.M., 1990 MB: the first Mars Trojan, Proc. Int. Conf. on Asteroids, Comets, Meteors, Houston, 1991, p. 96.Google Scholar
  48. Ivezic, Z., Tabachnik, S., Rafikov, R., et al., Solar system objects observed in the Sloan digital sky survey commissioning data, Astron. J., 2001, vol. 122, pp. 2749–2784.ADSGoogle Scholar
  49. Jewitt, D.C. and Luu, J.X., CCD spectra of asteroids. II. The Trojans as spectral analogs of cometary nuclei, Astron. J., 1990, vol. 100, pp. 933–944.ADSGoogle Scholar
  50. Jewitt, D., Trujillo, C., and Luu, J., Population and size distribution of small Jovian Trojan asteroids, Astron. J., 2000, vol. 120, pp. 1140–1147.ADSGoogle Scholar
  51. Jones, T.D., Lebofsky, L.A., Lewis, J.S., and Marley, M.S., The composition and origin of the C, P, and D asteroids-water as a tracer of thermal evolution in the outer belt, Icarus, 1990, vol. 88, pp. 172–192.ADSGoogle Scholar
  52. Kary, D.M. and Lissauer, J.J., Nebular gas drag and planetary accretion: II. planet on an eccentric orbit, Icarus, 1995, vol. 117, pp. 1–24.ADSGoogle Scholar
  53. Kuiper, G.P., Fujita, Y., Gehrels, T., et al., Survey of asteroids, Astophys. J. Suppl. Ser., 1958, vol. 3, p. 32.Google Scholar
  54. Lacerda, P. and Jewitt, D., Densities of solar system objects from their rotational lightcurves, Astron. J., 2007, vol. 133, pp. 1393–1408.ADSGoogle Scholar
  55. Lagerkvist, C.-I. and Sjolander, N.-G., Photographic photometry of asteroids with Schmidt telescopes. II. Observation of 11 asteroids during 1977 and 1978, Acta Astron., 1978, vol. 29, pp. 455–461.ADSGoogle Scholar
  56. Lagrange, J.-L., Essai sur le Problème des Trois Corps, in Oeuvres de Lagrange, Tome sixime, Serret, J.-A., Ed., Paris: Gauthiers-Villars, 1873, pp. 229–331.Google Scholar
  57. Lazzarin, M., Barbieri, C., and Barucci, M.A., Visible spectroscopy of dark, primitive asteroids, Astron. J., 1995, vol. 110, pp. 3058–3072.ADSGoogle Scholar
  58. Lazzaro, D., Angeli, C.A., Carvano, J.M., et al., S3OS2: the visible spectroscopic survey of 820 asteroids, Icarus, 2004, vol. 172, pp. 179–220.ADSGoogle Scholar
  59. Lebofsky, L.A. and Spencer, J.R., Radiometry and a thermal modeling of asteroids, in Asteroids II, Binzel, R.P., et al., Eds., Tucson: Univ. Arizona Press, 1989, pp. 128–147.Google Scholar
  60. Levison, H., Shoemaker, E.M., and Shoemaker, C.S., The dispersal of the Trojan asteroid swarm, Nature, 1997, vol. 385, pp. 42–44.ADSGoogle Scholar
  61. Levison, H.F., Morbidelli, A., Vanlaerhoven, C., Gomes, R., and Tsiganis, K., Origin of the structure of the Kuiper belt during a dynamical instability in the orbits of Uranus and Neptune, Icarus, 2008, vol. 196, pp. 258–273.ADSGoogle Scholar
  62. Luu, J., Jewitt, D., and Cloutis, E., Near-infrared spectroscopy of primitive solar system objects, Icarus, 1994, vol. 109, pp. 133–144.ADSGoogle Scholar
  63. Lykawka, P.S. and Mukai, T., An outer planet beyond Pluto and the origin of the Trans-Neptunian Belt architecture, Astron. J., 2008, vol. 135, no. 4, pp. 1161–1200.ADSGoogle Scholar
  64. Lykawka, P.S. and Horner, J., The capture of Trojan asteroids by the giant planets during planetary migration, Mon. Notic. Roy. Astron. Soc., 2010, vol. 405, no. 2, pp. 1375–1383.ADSGoogle Scholar
  65. Malhotra, R., The origin of Pluto’s peculiar orbit, Nature, 1993, vol. 365, pp. 819–821.ADSGoogle Scholar
  66. Malhotra, R., The origin of Pluto’s orbit: implications for the Solar system beyond Neptune, Astron. J., 1995, vol. 110, pp. 420–429.ADSGoogle Scholar
  67. Mann, R., Jewitt, D., and Lacerda, P., Fraction of contact binary Trojan asteroids, Astron. J., 2007, vol. 134, pp. 1133–1144.ADSGoogle Scholar
  68. Marchis, F., Hestroffer, D., Descamps, P., et al., A low density of 0.8 g cm−3 the Trojan binary asteroid 617 Patroclus, Nature Lett., 2006, vol. 439/2, pp. 565–567.ADSGoogle Scholar
  69. Markeev, A.P., Tochki libratsii v nebesnoi mekhanike i kosmodinamike (Libration Points in Celestial Mechanics and Space Dynamics), Moscow: Nauka, 1978.Google Scholar
  70. Marzari, F. and Scholl, H., Capture of Trojans by a growing proto-Jupiter, Icarus, 1998a, vol. 131, pp. 41–51.ADSGoogle Scholar
  71. Marzari, F. and Scholl, H., The growth of Jupiter and Saturn and the capture of Trojans, Astron. Astrophys., 1998b, vol. 339, pp. 278–285.ADSGoogle Scholar
  72. Marzari, F. and Scholl, H., The role of secular resonances in the history of Trojans, Icarus, 2000, vol. 146, pp. 232–239.ADSGoogle Scholar
  73. Marzari, F., Scholl, H., Murray, C., et al., Origin and evolution of Trojan asteroids, in Asteroids III, Bottke, W.F., Jr., Ed., Tucson: Univ. Arizona Press, 2002, pp. 725–738.Google Scholar
  74. Merline, W.J., Close, L.M., and Menard, F., et al., Search for asteroid satellites, Bull. Am. Astron. Soc., 2001, vol. 33, p. 1133.ADSGoogle Scholar
  75. Merline, W.J., Weidenschilling, S.J., Durda, D.D., et al., Asteroids do have satellites, in Asteroids III, Bottke, W.F., Jr., Ed., Tucson: Univ. Arizona Press, 2002, pp. 289–312.Google Scholar
  76. Michtchenko, T.A., Beaugé, C., and Roig, F., Planetary migration and the effects of mean motion resonances on Jupiter’s Trojan asteroids, Astron. J., 2001, vol. 122, pp. 3485–3491.ADSGoogle Scholar
  77. Milani, A., The Trojan asteroid belt: proper elements, stability, chaos, and families, Celest. Mech. Dyn. Astron., 1993, vol. 57, pp. 59–94.ADSMathSciNetGoogle Scholar
  78. Milani, A. and Knezevic, Z., Asteroid proper elements and the dynamical structure of the asteroid main belt, Icarus, 1994, vol. 107, pp. 219–254.ADSGoogle Scholar
  79. Morbidelli, A., Levison, H.F., Tsiganis, K., and Gomes, R., Chaotic capture of Jupiter’s Trojan asteroids in the early solar system, Nature Lett., 2005, vol. 435, pp. 462–465.ADSGoogle Scholar
  80. Morrison, D., Asteroid sizes and albedos, Icarus, 1977, vol. 31, pp. 185–220.ADSGoogle Scholar
  81. Mottola, S., Di Martino, M., and Erikson, A., Rotational properties of Jupiter Trojans. I. Light curves of 80 objects, Astron. J., 2011, vol. 141, p. 170.ADSGoogle Scholar
  82. Noll, K.S., Solar system binaries, Proc. 229th IAU Symp., Paris, 2005, pp. 301–318.Google Scholar
  83. O’Brien, D.O. and Morbidelli, A., The collisional evolution of Trojan asteroids-possible origin of the L4–L5 asymmetry, Asteroids, Comets, Meteors, 2008.Google Scholar
  84. Peale, S.J., The effect of the nebula on the Trojan precursors, Icarus, 1993, vol. 106, pp. 308–322.ADSGoogle Scholar
  85. Petit, J.-M., Morbidelli, A., and Chambers, J., The primordial excitation and clearing of the asteroid belt, Icarus, 2001, vol. 153, pp. 338–347.ADSGoogle Scholar
  86. Pollack, J.B., Hubickyj, O., Bodenheimer, P., et al., Formation of the giant planets by concurrent accretion of solids and gas, Icarus, 1996, vol. 124, pp. 62–85.ADSGoogle Scholar
  87. Rabe, E., The Trojans as escaped satellites of Jupiter, Astron. J., 1954, vol. 59, pp. 433–438.ADSGoogle Scholar
  88. Richardson, D.C. and Walsh, K.J., Binary minor planets, Annu. Rev. Earth Planet. Sci., 2006, vol. 34, pp. 47–81.ADSGoogle Scholar
  89. Roig, F., Ribeiro, A.O., and Gil-Hutton, R., Taxonomy of asteroid families among the Jupiter Trojans: comparison between spectroscopic data and the Sloan Digital Sky Survey colors, Astron. Astrophys., 2008, vol. 483, pp. 911–931.ADSGoogle Scholar
  90. Ryabov, Yu.A., Whether it is possible to generate a theory of Trojans motion based on the hypothesis on they closeness to libration points, Astron. Zh., 1956, vol. 33, no. 6, pp. 936–952.Google Scholar
  91. Sagan, C. and Khare, B.N., Tholins—organic chemistry of interstellar grains and gas, Nature, 1979, vol. 277, pp. 102–107.ADSGoogle Scholar
  92. Schaefer, M.W., Schaefer, B.E., Rabinowitz, D.L., and Tourtellotte, S.W., Phase curves of nine Trojan asteroids over a wide range of phase angles, Icarus, 2010, vol. 207, pp. 699–713.ADSGoogle Scholar
  93. Sheppard, S.S. and Jewitt, D., Extreme Kuiper Belt object 2001 QG298 and the fraction of contact binaries, Astron. J., 2004, vol. 127, pp. 3023–3033.ADSGoogle Scholar
  94. Shevchenko, V.G., Chiorny, V.G., Kalashnikov, A.V., et al., Magnitude-phase dependences for three asteroids, Astron. Astrophys., 1996, vol. 115, suppl., pp. 475–479.ADSGoogle Scholar
  95. Shevchenko, V.G., Chiorny, V.G., Gaftonyuk, N.M., et al., Asteroid observations at low phase angles. III. Brightness behavior of dark asteroids, Icarus, 2008, vol. 196, pp. 601–611.ADSGoogle Scholar
  96. Shevchenko, V.G., Krugly, Yu.N., Belskaya, I.N., et al., Do Trojan asteroids have the brightness opposition effect?, Proc. 40th Lunar and Planet. Sci. Conf., Houston, 2009.Google Scholar
  97. Shevchenko, V.G., Belskaya, I.N., Slyusarev, I.G., et al., Opposition effect of Trojan asteroids, Icarus, 2012, vol. 217, pp. 202–208.ADSGoogle Scholar
  98. Shoemaker, E.M., Shoemaker, C.S., and Wolfe, R.F., Trojan asteroids: populations, dynamical structure and origin of the L4 and L5 swarms, in Asteroids II, Binzel, R.P., et al., Eds., Tucson: Univ. Arizona Press, 1989, pp. 487–523.Google Scholar
  99. Slyusarev, I.G., Shevchenko, V.G., Belskaya, I.N., et al., Magnitude phase angle dependences of Jupiter Trojans and Hilda asteroids, Proc. 43rd Lunar and Planet. Sci. Conf., Houston, 2012.Google Scholar
  100. Smith, D.W., Johnson, P.E., and Shorthill, R.W., Spectrophotometry of J8, J9, and four Trojan asteroids from 0.32 to 1.05 μm, Icarus, 1981, vol. 48, pp. 108–113.ADSGoogle Scholar
  101. Stevenson, D.J. and Lunine, J.I., Rapid formation of Jupiter by diffuse redistribution of water vapor in the solar nebula, Icarus, 1988, vol. 75, pp. 146–155.ADSGoogle Scholar
  102. Storrs, A., Weiss, B., Zellner, B., et al., Imaging observations of asteroids with Hubble space telescope, Icarus, 1999, vol. 137, pp. 260–268.ADSGoogle Scholar
  103. Storrs, A.D., Dunne, C., Conan, J.-M., et al., A closer look at main belt asteroids 1: WF/PC images, Icarus, 2005, vol. 173, pp. 409–416.ADSGoogle Scholar
  104. Szabó, Gy.M., Ivezic, Z., Juric, M., and Lupton, R., The properties of Jovian Trojan asteroids listed in SDSS Moving Object Catalog 3, Mon. Notic. Roy. Astron. Soc., 2007, vol. 377, pp. 1393–1406.ADSGoogle Scholar
  105. Tanga, P., Hestroffer, D., Cellino, A., et al., Asteroid observations with the Hubble Space telescope. II. Duplicity search and size measurements for 6 asteroids, Astron. Astrophys., 2003, vol. 401, pp. 733–741.ADSGoogle Scholar
  106. Tedesco, E.F., Asteroids magnitudes, UBV colors, and IRAS albedos and diameters, in Asteroids II, Binzel, R.P., et al., Eds., Tucson: Univ. Arizona Press, 1989, pp. 1090–1138.Google Scholar
  107. Tedesco, E.F., Noah, P.V., Noah, M., and Price, S.D., The supplemental IRAS minor planet survey, Astron. J., 2002, vol. 123, pp. 1056–1085.ADSGoogle Scholar
  108. Tsiganis, K., Gomes, R., Morbidelli, A., and Levison, H.F., Origin of the orbital architecture of the giant planets of the Solar System, Nature, 2005, vol. 435, pp. 459–461.ADSGoogle Scholar
  109. Usui, F., Kuroda, D., Müller, T.G., et al., Asteroid catalog using Akari: AKARI/IRC mid-infrared asteroid survey, Publ. Astron. Soc. Jpn., 2011, vol. 63, no. 5, pp. 1117–1138.ADSGoogle Scholar
  110. van Houten, C.J., van Houten-Groeneveld, I., and Gehrels, T., Minor planets and related objects V: the density of Trojans near the preceding Lagrangian point, Astron. J., 1970, vol. 75, pp. 659–662.ADSGoogle Scholar
  111. Vilas, F., Larson, S.M., Hatch, E.C., et al., CCD reflectance spectra of selected asteroids. II. Low-albedo asteroid spectra and data extraction techniques, Icarus, 1993, vol. 105, pp. 67–78.ADSGoogle Scholar
  112. Warner, B.D., Harris, A.W., and Pravec, P., The asteroid lightcurve database, Icarus, 2009, vol. 202, pp. 134–146.ADSGoogle Scholar
  113. Wetherill, G.W., An alternative model for the formation of the asteroids, Icarus, 1992, vol. 100, pp. 307–325.ADSGoogle Scholar
  114. Yang, B. and Jewitt, D., Spectroscopic search for water ice on Jovian Trojan asteroids, Bull. Am. Astron. Soc., 2006, vol. 38, p. 50.Google Scholar
  115. Yang, B. and Jewitt, D., A near-infrared search for silicates in Jovian Trojan asteroids, Astron. J., 2011, vol. 141, article ID 95.Google Scholar
  116. Yoder, C.F., Notes on the origin of the Trojan asteroids, Icarus, 1979, vol. 40, pp. 341–344.ADSGoogle Scholar
  117. Yoshida, F., Nakamura, T., Watanabe, J., et al., Size and spatial distributions of sub-km Main-Belt Asteroids, Publ. Astron. Soc. Jpn., 2003, vol. 55, pp. 701–715.ADSGoogle Scholar
  118. Yoshida, F. and Nakamura, T., Size distribution of faint Jovian L4 Trojan asteroids, Astron. J., 2005, vol. 130, pp. 2900–2911.ADSGoogle Scholar
  119. Yoshida, F. and Nakamura, T., A comparative study of size distributions for small L4 and L5 Jovian Trojans, Publ. Astron. Soc. Jpn., 2008a, vol. 60, pp. 297–301.ADSGoogle Scholar
  120. Yoshida, F. and Nakamura, T., A new surface density model of Jovian Trojans around triangular libration points, Publ. Astron. Soc. Jpn., 2008b, vol. 60, pp. 293–296.Google Scholar
  121. Zagretdinov, R.V., Libration motion of Trojan asteroids by considering orbits inclination, Kinemat. Fiz. Nebesn. Tel, 1986, vol. 2, no. 4, pp. 77–80.ADSGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2014

Authors and Affiliations

  • I. G. Slyusarev
    • 1
  • I. N. Belskaya
    • 1
  1. 1.Institute of AstronomyKharkiv National UniversityKharkivUkraine

Personalised recommendations