Skip to main content
Log in

The estimate of the Venus magnetotail length

Solar System Research Aims and scope Submit manuscript

Abstract

We consider the process of flux tubes straightening in the Venus magnetotail on the basis of MHD model. We estimate the distance x t, where flux tubes are fully straightened due to the magnetic tension and the magnetotail with the characteristic geometry of field lines (“slingshot” geometry) ends. We investigate the influence of the transversal current sheet scale on the process of flux tubes straightening. The assumption of a thin current sheet allows to obtain a lower estimate of the magnetotail length, x t > 31R V (R V is the Venus radius), while the assumption of a broad current sheet allows to obtain an upper estimate, x t < 44R V. We show that kinetic effects associated with the losses of particles with small pitch angles from the flux tube and the influx of magnetosheath plasma into the flux tube do not significantly affect the estimate of the magnetotail length. The model predicts the existence of energetic fluxes of protons H+ (2–5 keV) and oxygen ions O+ (35–80 keV) in the distant tail. We discuss the magnetotail structure at x > x t.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  • Artemyev, A.V., Petrukovich, A.A., Zelenyi, L.M., et al., Thin embedded current sheets: cluster observations of ion kinetic structure and analytical models, Ann. Geophys., 2009, vol. 27, pp. 4075–4087.

    Article  ADS  Google Scholar 

  • Breus, T.K., Venus: review of present understanding of solar wind interaction, Space Sci. Rev., 1979, vol. 23, pp. 253–275.

    Article  ADS  Google Scholar 

  • Cloutier, P.A., Daniell, R.E., and Butler, D.M., Atmospheric ion wakes of Venus and Mars in the solar wind, Planet. Space Sci., 1974, vol. 23, pp. 967–990.

    Article  ADS  Google Scholar 

  • Eastwood, J.W., Consistency of fields and particle motion in the “Speiser” model of the current sheet, Planet. Space Sci., 1972, vol. 20, p. 1555–1568.

    Article  ADS  Google Scholar 

  • Elphic, R.C., Russell, C.T., Slavin, J.A., and Brace, L.H., Observations of the dayside ionopause and ionosphere of Venus, J. Geophys. Res., 1980, vol. 85, pp. 7679–7696.

    Article  ADS  Google Scholar 

  • Eroshenko, E.G., Effect of unipolar induction in the Venus magnetic tail, Kosm. Issl., 1979, vol. 17, no. 1, pp. 93–105.

    ADS  Google Scholar 

  • Kallio, E., Chaufray, J.-Y., Modolo, R., et al., Modeling of Venus, Mars and Titan, Space Sci. Rev., 2011, vol. 162, pp. 267–307.

    Article  ADS  Google Scholar 

  • Luhmann, J.G., The solar wind interaction with Venus, Space Sci. Rev., 1986, vol. 44, pp. 241–306.

    Article  ADS  Google Scholar 

  • McComas, D.J., Spence, H.T., Russell, C.T., and Saun-ders, M.A., The average magnetic field draping and consistent plasma properties of the Venus magnetotail, J. Geophys. Res., 1986, vol. 91, pp. 7939–7953.

    Article  ADS  Google Scholar 

  • Mihalov, J.D. and Barnes, A., The distant interplanetary wake of Venus: plasma observation from Pioneer Venus, J. Geophys. Res., 1982, vol. 87, pp. 9043–9045.

    ADS  Google Scholar 

  • Moore, K.R., McComas, D.J., Russell, C.T., and Mihalov, J.D., A statistical study of ions and magnetic fields in the Venus magnetotail, J. Geophys. Res., 1990, vol. 95, pp. 12005–12018.

    Article  ADS  Google Scholar 

  • Moore, K.R., McComas, D.J., Russell, C.T., et al., Gasdynamic modeling of the Venus magnetotail, J. Geophys. Res., 1991, vol. 96, pp. 5667–5681.

    Article  ADS  Google Scholar 

  • Phillips, J.L. and McComas, D.J., The magnetosheath and magnetotail of Venus, Space Sci. Rev., 1991, vol. 50, pp. 1–80.

    ADS  Google Scholar 

  • Rich, F.J., Vasyliunas, V.M., and Wolf, R.A., On the balance of stresses in the plasma sheet, J. Geophys. Res., 1972, vol. 77, pp. 4670–4676.

    Article  ADS  Google Scholar 

  • Russell, C.T., Elphic, R.C., and Slavin, J.A., Limits of the possible intrinsic magnetic field of Venus, J. Geophys. Res., 1980, vol. 85, pp. 8319–8332.

    Article  ADS  Google Scholar 

  • Russell, C.T., Luhman, J.G., Elphic, R.C., and Scarf, F.L., The distant bow shock and magnetotail of Venus: magnetic field and plasma wave observations, Geophys. Rev. Lett., 1981, vol. 8, pp. 843–846.

    Article  ADS  Google Scholar 

  • Saunders, M.A. and Russell, C.T., Average dimension and magnetic structure of the distant Venus magnetotail, J. Geophys. Res., 1986, vol. 91, pp. 5589–5604.

    Article  ADS  Google Scholar 

  • Sitnov, M.I., Zelenyi, L.M., Malova, H.V., and Sharma, A.S., Thin current sheet embedded within a thicker plasma sheet: self-consistent kinetic theory, J. Geophys. Res., 2000, vol. 105, pp. 13029–13043.

    Article  ADS  Google Scholar 

  • Sitnov, M.I., Swisdack, M., Guzdar, P.N., and Runov, A., Structure and dynamics of a new class of thin current sheets, J. Geophys. Res., 2006, vol. 111, p. A08204.

    ADS  Google Scholar 

  • Slavin, J.A., Elphic, R.C., Russell, C.T., et al., Position and shape of the Venus bow shock: Pioneer Venus orbiter observations, Geophys. Rev. Lett., 1979, vol. 6, pp. 901–904.

    Article  ADS  Google Scholar 

  • Slavin, J.A., Elphic, R.C., Russell, C.T., et al., The solar wind interaction with Venus: Pioneer Venus observations of bow shock location and structure, J. Geophys. Res., 1980, vol. 85, pp. 7625–7641.

    Article  ADS  Google Scholar 

  • Slavin, J.A., Smith, E.J., and Intriligator, D.S., A comparative study of the distant magnetotail structure at Venus and Earth, Geophys. Rev. Lett., 1984, vol. 11, pp. 1074–1077.

    Article  ADS  Google Scholar 

  • Speiser, T.W., Particle trajectories in model current sheets. 1. Analytical solutions, J. Geophys. Res., 1965, vol. 70, pp. 4219–4226.

    Article  ADS  Google Scholar 

  • Spenner, K., Knudsen, W.C., Miller, K.L., et al., Observations of the Venus mantle, the boundary region between solar wind and ionosphere, J. Geophys. Res., 1980, vol. 85, pp. 7655–7662.

    Article  ADS  Google Scholar 

  • Titov, D.V., Svedhem, H., Taylor, F.W., and Barabash, S., Venus Express: highlights of the nominal mission, Solar Syst. Res., 2009, vol. 43, pp. 185–209.

    Article  ADS  Google Scholar 

  • Vaisberg, O.L., Romanov, S.A., Smirnov, V.N., et al., Structure of interaction area for solar wind with the Venus according to ion flow characteristics measured by automated interplanetary station “Venera 9” and “Venera 10”, Kosm. Issl., 1976, vol. 14, no. 6, pp. 827–838.

    ADS  Google Scholar 

  • Vaisberg, O.L. and Zelenyi, L.M., Formation of the plasma mantle in the Venusian magnetosphere, Kosm. Issl., 1982, vol. 20, no. 4, pp. 604–619.

    ADS  Google Scholar 

  • Vaisberg, O.L. and Zelenyi, L.M., Formation of the plasma mantle in the Venusian magnetosphere, Icarus, 1984, vol. 58, pp. 412–430.

    Article  ADS  Google Scholar 

  • Vaisberg, O., Fedorov, A., Dunjushkin, F., et al., Ion populations in the tail of Venus, Adv. Space Res., 1995, vol. 16, pp. 105–118.

    Article  ADS  Google Scholar 

  • Verigin, M.I., Gringauz, K.I., Gombosi, T., et al., Plasma near Venus from the Venera 9 and 10 wide-angle analyzer data, J. Geophys. Res., 1978, vol. 83, pp. 3721–3728.

    Article  ADS  Google Scholar 

  • Zelenyi, L.M., Sitnov, M.I., Malova, H.V., and Sharma, A.S., Thin and superthin ion current sheets. Quasi-adiabatic and nonadiabatic models, Nonlinear Processes Geophys., 2000, vol. 7, pp. 127–139.

    Article  ADS  Google Scholar 

  • Zelenyi, L.M., Malova, H.V., Popov, V.Y., et al., “Matreshka” model of multilayered current sheet, J. Geophys. Res., 2006, vol. 33, p. L05105.

    ADS  Google Scholar 

  • Zhang, T.L., Baumjohann, W., Du, J., et al., Hemispheric asymmetry of the magnetic field wrapping pattern in the Venus magnetotail, Geophys. Rev. Lett., 2010, vol. 37, p. L14202.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © I.Yu. Vasko, L.M. Zelenyi, V.Yu. Popov, 2014, published in Astronomicheskii Vestnik, 2014, Vol. 48, No. 2, pp. 99–112.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vasko, I.Y., Zelenyi, L.M. & Popov, V.Y. The estimate of the Venus magnetotail length. Sol Syst Res 48, 91–104 (2014). https://doi.org/10.1134/S0038094614010079

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0038094614010079

Keywords

Navigation