Skip to main content
Log in

Numerical simulation of the LCROSS impact experiment

  • Published:
Solar System Research Aims and scope Submit manuscript

Abstract

This study presents the results of the numerical modeling of the Lunar Crater Observation and Sensing Satellite (LCROSS) space experiment, which is scheduled for 2009 by NASA. It is demonstrated that a spacecraft with a mass of 2 tons impacting the Moon at a velocity of 2.5 km/s creates an ejecta plume with a size of more than 100 km and a mass exceeding 100 tons. The detailed characteristics of the ejecta are given and their relation to the impactor structure is investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arnold, J.R., Ice in the Lunar Polar Regions, J. Geophys. Res., Ser. B, 1979, vol. 84, no. 10, pp. 5659–5667.

    Article  ADS  Google Scholar 

  • Dienes, J.K. and Walsh, J.M., Theory of Impact: Some General Principles and the Method of Eulerian Codes, in High-Velocity Impact Phenomena, Kinslow, R., Ed., New York: Academic, 1970, pp. 46–104.

    Google Scholar 

  • Feldman, W.C., Maurice, S., Binder, A.B., et al., Fluxes of Fast and Epithermal Neutrons from Lunar Prospector: Evidence for Water Ice at the Lunar Poles, Science, 1998, vol. 281, pp. 1496–1500.

    Article  ADS  Google Scholar 

  • Lundborg, N., Strength of Rock-Like Materials, Int. J. Rock Mech. Min. Sci., 1968, vol. 5, pp. 427–454.

    Article  Google Scholar 

  • McGlaun, J.M., Thompson, S.L., and Elrick, M.G., CTH: A Three-Dimensional Shock Wave Physics Code, Int. J. Impact Eng., 1990, vol. 10, pp. 351–360.

    Article  Google Scholar 

  • Melosh, H.J., Impact Cratering: A Geologic Process, New York: Oxford Univ. Press, 1989. Translated under the title Obrazovanie udarnykh kraterov: geologicheskii protsess, Moscow: Mir, 1994.

    Google Scholar 

  • Melosh, H.J. and Ivanov, B.A., Impact Crater Collapse, Annu. Rev. Earth Planet. Sci, 1999, vol. 27, pp. 385–425.

    Article  ADS  Google Scholar 

  • O’Keefe, J.D. and Ahrens, T.J., Complex Crater: Relationship of Stratigraphy and Rings To Impact Conditions, J. Geophys. Res., Ser. E, 1999, vol. 104, no. 11, pp. 27091–27104.

    Article  ADS  Google Scholar 

  • Pierazzo, E., Artemieva, N.A., and Ivanov, B.A., Starting Conditions for Hydrothermal Systems Underneath Martian Craters: Hydrocode Modeling, GSA Spec. Pap., 2004, vol. 384, pp. 443–457.

    Google Scholar 

  • Samarskii, A.A. and Popov, Yu.G., Raznostnye metody resheniya zadach gazovoi dinamiki (Difference Methods for the Solution of Problems of Gas Dynamics), Moscow: Nauka, 1980.

    Google Scholar 

  • Shuvalov, V.V., Multi-Dimensional Hydrodynamic Code SOVA for Interfacial Flows: Application To Thermal Layer Effect, Shock Waves, 1999, vol. 9, no. 6, pp. 381–390.

    Article  MATH  ADS  Google Scholar 

  • Shuvalov, V., Displacement of Target Material during Impact Cratering, Impact Markers in the Stratigraphic Record, Koeberl, C. and Martinez-Ruiz, F.C., Eds., ESF Impact, Berlin: Springer, 2003, pp. 121–135.

    Google Scholar 

  • Thompson, S.L. and Lauson, H.S., Improvements in the Chart D Radiation-Hydrodynamic CODE III: Revised Analytic Equations of State, Report of Sandia Nat. Lab., Albuquerque, New Mexico, 1972, no. SC-RR-71 0714.

    Google Scholar 

  • Tillotson, J.H., Metallic Equations of State for Hypervelocity Impact, General Atomic Report, 1962, GA-3216.

  • Van Leer, B., Towards the Ultimate Conservative Difference Scheme IV. A New Approach to Numerical Convection, J. Comput. Phys., 1977, vol. 23, pp. 276–299.

    Article  ADS  Google Scholar 

  • Wünnemann, K., Collins, G.S., and Melosh, H.J., A Strain-Based Porosity Model for Use in Hydrocode Simulations of Impacts and Implications for Transient Crater Growth in Porous Targets, Icarus, 2006, vol. 180, pp. 514–527.

    Article  ADS  Google Scholar 

  • Zharkov, V.N., Vnutrennee stroenie Zemli i planet (Internal Structure of the Earth and Planets), Moscow: Nauka, 1983.

    Google Scholar 

  • Zamyshlyaev, B.V. and Evterev, L.S., Modeli dinamicheskogo deformirovaniya i razrusheniya gruntovykh sred (Models of Dynamic Deformation and Destruction of Grounds), Moscow: Nauka, 1990.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V.V. Shuvalov, I.A. Trubetskaya, 2008, published in Astronomicheskii Vestnik, 2008, Vol. 42, No. 1, pp. 3–9.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shuvalov, V.V., Trubetskaya, I.A. Numerical simulation of the LCROSS impact experiment. Sol Syst Res 42, 1–7 (2008). https://doi.org/10.1134/S0038094608010012

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0038094608010012

PACS numbers

Navigation