Skip to main content
Log in

On the Distribution of a Random Power Series on the Dyadic Half-Line

  • Published:
Siberian Mathematical Journal Aims and scope Submit manuscript

Abstract

We consider an analog of the problem of the existence of the summable distributional density of a random variable in the form of power series on the dyadic half-line which was originally proposed and partially solved by Erdös on the standard real line. Given a random variable \( \xi \) as a series of the powers of \( \lambda\in(0,1) \), we address the question of \( \lambda \) such that the density of \( \xi \) belongs to the space of the function whose modulus is summable on the dyadic half-line. We answer the question for some values of \( \lambda \), and consider the so-called dual problem when \( \lambda=\frac{1}{2} \) is fixed, but the coefficients of the formula for \( \xi \) have more degrees of freedom. Also we obtain some criteria for the existence of density in terms of the solution of the refinement equation tied directly to \( \xi \) as well as in terms of the coefficients defining \( \xi \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Volosivets S.S., “Applications of \( \mathbf{P} \)-adic generalized functions and approximations by a system of \( \mathbf{P} \)-adic translations of a function,” Sib. Math. J., vol. 50, no. 1, 1–13 (2009).

    Article  MathSciNet  Google Scholar 

  2. Lukomskii S.F., Berdnikov G.S., and Kruss Yu.S., “On the orthogonality of a system of shifts of the scaling function on Vilenkin groups,” Math. Notes, vol. 98, no. 2, 339–342 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  3. Vodolazov A.M. and Lukomskii S.F., “Orthogonal shift systems in the field of \( p \)-adic numbers,” Izv. Saratov Univ. Math. Mech. Inform., vol. 16, no. 3, 256–262 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  4. Lukomskii S.F., “Haar system on the product of groups of \( p \)-adic integers,” Math. Notes, vol. 90, no. 4, 517–532 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  5. Protasov V.Yu. and Farkov Yu.A., “Dyadic wavelets and refinable functions on a half-line,” Sb. Math., vol. 197, no. 10, 1529–1558 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  6. Lang W.C., “Fractal multiwavelets related to the Cantor dyadic group,” Intern. J. Math. and Math. Sci., vol. 21, no. 1, 307–317 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  7. Schipp F., Wade W.R., and Simon P., Walsh Series: An Introduction to Dyadic Harmonic Analysis, Adam Hilger, New York (1990).

    MATH  Google Scholar 

  8. Golubov B.I., Efimov A.V., and Skvortsov V.A., Walsh Series and Transforms, Kluwer, Dordrecht (1991).

    Book  MATH  Google Scholar 

  9. Karapetyants M. and Protasov V., “Spaces of dyadic distributions,” Funct. Anal. Appl., vol. 54, no. 1, 272–277 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  10. Golubov B.I., “Dyadic distributions,” Sb. Math., vol. 198, no. 2, 207–230 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  11. Erdös P., “On the smoothness properties of a family of Bernoulli convolutions,” Amer. J. Math., vol. 62, no. 1, 180–186 (1940).

    Article  MathSciNet  MATH  Google Scholar 

  12. Erdös P., “On a family of symmetric Bernoulli convolutions,” Amer. J. Math., vol. 61, no. 4, 974–975 (1939).

    Article  MathSciNet  MATH  Google Scholar 

  13. Garsia A.M., “Arithmetic properties of Bernoulli convolutions,” Trans. Amer. Math. Soc., vol. 101, no. 1, 409–432 (1962).

    Article  MathSciNet  MATH  Google Scholar 

  14. Peres Y. and Solomyak B., “Absolute continuity of Bernoulli convolution, a simple proof,” Math. Res. Lett., vol. 3, no. 2, 231–239 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  15. Solomyak B., “On the random series \( \sum\pm\lambda^{j} \) (an Erdös problem),” Ann. Math., vol. 142, no. 1, 611–625 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  16. Derfel G., “A criterion for the existence of bounded solutions of a functional-differential equation arising in probability theory,” Funct. Differ. Equ., vol. 2, no. 1, 25–31 (1985).

    MathSciNet  Google Scholar 

  17. Kolmogorov A.N. and Fomin S.V., Elements of the Theory of Functions and Functional Analysis, Dover, Mineola (1999).

    Google Scholar 

  18. Zakusilo O.K., “On classes of limit distributions in some scheme of summation,” Teor. Verojatnost. i Mat. Statist., vol. 12, no. 1, 44–48 (1975).

    MATH  Google Scholar 

  19. Zakusilo O.K., “Some properties of the class \( L_{c} \) of limit distributions,” Teor. Verojatnost. i Mat. Statist., vol. 15, no. 1, 68–73 (1976).

    Google Scholar 

  20. Kravchenko V.F. and Rvachev V.L., Logic Algebra, Atomic Functions, and Wavelets in Physical Applications, Fizmatlit, Moscow (2009) [Russian].

    Google Scholar 

  21. Protasov V., “Refinement equations with nonnegative coefficients,” J. Fourier Anal. Appl., vol. 1, no. 6, 11–35 (2000).

    MathSciNet  MATH  Google Scholar 

  22. Derfel G., Dyn N., and Levin D., “Generalized refinement equations and subdivision processes,” J. Approx. Theory, vol. 80, no. 2, 272–297 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  23. Derfel G. and Schilling R., “Spatially chaotic configurations and functional equations with rescaling,” J. Phys. A., vol. 15, no. 1, 4537–4547 (1995).

    MathSciNet  MATH  Google Scholar 

  24. Kapica R. and Morawiec J., “Inhomogeneous refinement equations with random affine maps,” J. Difference Equ. Appl., vol. 12, no. 21, 1200–1211 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  25. Kapica R. and Morawiec J., “Refinement type equations and Grincevičjus series,” J. Math. Anal. Appl., vol. 350, no. 1, 393–400 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  26. Morawiec J., “On \( L_{1} \)-solutions of a two-direction refinement equation,” J. Math. Anal. Appl., vol. 354, no. 1, 648–656 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  27. Cavaretta A.S., Dahmen W., and Micchelli Ch.A., Stationary Subdivision, vol. 186, Mem. Amer. Math. Soc., New York (1991).

    MATH  Google Scholar 

  28. Karapetyants M.A., “Subdivision schemes on the dyadic half-line,” Izv. Math., vol. 84, no. 5, 910–929 (2020).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The author expresses his deepest gratitude to Professor Vladimir Yu. Protasov and the anonymous reviewer for the valuable comments and discussion of the work.

Funding

This work is supported by Grant no. 075–02–2023–924.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Karapetyants.

Ethics declarations

As author of this work, I declare that I have no conflicts of interest.

Additional information

Translated from Sibirskii Matematicheskii Zhurnal, 2023, Vol. 64, No. 6, pp. 1186–1198. https://doi.org/10.33048/smzh.2023.64.607

Publisher's Note

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karapetyants, M.A. On the Distribution of a Random Power Series on the Dyadic Half-Line. Sib Math J 64, 1319–1329 (2023). https://doi.org/10.1134/S0037446623060071

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0037446623060071

Keywords

UDC

Navigation