Skip to main content
Log in

Quasi-Invariant and Invariant Functionals and Measures on Systems of Topological Loops and Quasigroups

  • Published:
Siberian Mathematical Journal Aims and scope Submit manuscript

Abstract

Under study are the left-invariant, right-invariant, and quasi-invariant functionals and measures on topological loops and quasigroups. We also address the relations between topologies and measures on loops, the left-invariant, right-invariant, and quasi-invariant functionals and measures on locally connected as well as profinite loops and quasigroups. Moreover, we inspect how the quasi-invariant measures on topological spaces are related to the loop or quasigroup actions on them. Also, we consider the continuations of quasi-invariant functionals and measures on the extensions of topological spaces as well as measures and functionals on the inverse spectra of topological loops and quasigroups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fell J.M.G. and Doran R.S., Representations of \( * \)-Algebras, Locally Compact Groups, and Banach \( * \)-Algebraic Bundles. Vols. 1 and 2, Academic, Boston (1988).

    MATH  Google Scholar 

  2. Hewitt E. and Ross K.A., Abstract Harmonic Analysis. Vols. 1 and 2, Springer, Berlin (1979).

    Book  MATH  Google Scholar 

  3. Herforth W. and Plaumann P., “Boolean and profinite loops,” Topology Proc., vol. 37, 233–237 (2011).

    MathSciNet  MATH  Google Scholar 

  4. Kakkar V., “Boolean loops with compact left inner mapping groups are profinite,” Topology Appl., vol. 244, 51–54 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  5. Razmyslov Yu.P., Identities of Algebras and Their Representations, Nauka, Moscow (1989) [Russian] (Ser. Sovremennaya Algebra; vol. 14).

    MATH  Google Scholar 

  6. Smith J.D.H., An Introduction to Quasigroups and Their Representations, Chapman and Hall/CRC, Taylor and Francis Group, Boca Raton (2007).

    MATH  Google Scholar 

  7. Ludkovsky S.V., “Topological transformation groups of manifolds over non-Archimedean fields; representations and quasi-invariant measures,” J. Math. Sci., N. Y. (Springer), vol. 150, no. 4, 2123–2223 (2008).

    MathSciNet  Google Scholar 

  8. Ludkovsky S.V., “Stochastic processes on geometric loop groups; diffeomorphism groups of connected manifolds; associated unitary representations,” J. Math. Sci., N. Y. (Springer), vol. 141, no. 3, 1331–1384 (2007).

    MathSciNet  MATH  Google Scholar 

  9. Ludkovsky S.V., “Meta-centralizers of non locally compact group algebras,” Glasgow Math. J., vol. 57, 349–364 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  10. Arhangel’skii A. and Tkachenko M., Topological Groups and Related Structures, World Sci. and Atlantis, Amsterdam (2008).

    Book  MATH  Google Scholar 

  11. Ludkovsky S.V., “Existence of an invariant measure on a topological quasigroup,” Topology Appl., vol. 275 (2020) (Article 107147, 11 pp.).

  12. Ludkowski S.V., “Left invariant measures on locally compact nonassociative core quasigroups,” Southeast Asian Bull. Math., vol. 46, no. 3, 365–404 (2022).

    MathSciNet  MATH  Google Scholar 

  13. Bogachev V.I., Measure Theory. Vols. 1 and 2, Springer, Berlin (1989).

    Google Scholar 

  14. Cohn D.L., Measure Theory, Birkhäuser, New York (2013).

    Book  MATH  Google Scholar 

  15. Engelking R., General Topology, Heldermann, Berlin (1989) (Sigma Ser. Pure Math.; vol. 6).

    MATH  Google Scholar 

  16. Alexandroff A.D., “Additive set-functions in abstract spaces. I–IV,” Mat. Sb., vol. 8, no. 2, 307–312 (1940); vol. 9, no. 3, 563–628 (1941); vol. 13, no. 2, 169–238 (1943).

  17. Van Rooij A.C.M., Non-Archimedean Functional Analysis, Marcel Dekker, New York (1978).

    MATH  Google Scholar 

  18. Christensen J.P.R., “On some measures analogous to Haar measure,” Math. Scand., vol. 26, 103–106 (1970).

    Article  MathSciNet  MATH  Google Scholar 

  19. Loomis L.H., “Haar measures in uniform structures,” Duke Math. J., vol. 16, no. 2, 193–208 (1949).

    Article  MathSciNet  MATH  Google Scholar 

  20. Blahut R.E., Algebraic Codes for Data Transmission, Cambridge University, Cambridge (2003).

    Book  MATH  Google Scholar 

  21. Korablin Yu.P., “Equivalence of the schemes of programs based on the algebraic approach to setting the semantics of programming languages,” Russ. Technol. J., vol. 10, no. 1, 18–27 (2022).

    Article  Google Scholar 

  22. Markov V.N., Mikhalev A.V., and Nechaev A.A., “Nonassociative algebraic structures in cryptography and coding,” J. Math. Sci., N. Y. (Springer), vol. 245, no. 2, 178–196 (2020).

    MathSciNet  MATH  Google Scholar 

  23. Shum K.P., Ren X., and Wang Y., “Semigroups on semilattice and the constructions of generalized cryptogroups,” Southeast Asian Bull. Math., vol. 38, 719–730 (2014).

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Ludkovsky.

Additional information

Translated from Sibirskii Matematicheskii Zhurnal, 2023, Vol. 64, No. 5, pp. 1032–1049. https://doi.org/10.33048/smzh.2023.64.511

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ludkovsky, S.V. Quasi-Invariant and Invariant Functionals and Measures on Systems of Topological Loops and Quasigroups. Sib Math J 64, 1186–1199 (2023). https://doi.org/10.1134/S0037446623050117

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0037446623050117

Keywords

UDC

Navigation