Skip to main content
Log in

Distances between Maximal Monotone Operators

  • Published:
Siberian Mathematical Journal Aims and scope Submit manuscript

Abstract

We introduce a series of distances between maximal monotone operators and study their properties. As applications, we consider the existence of solutions to evolutionary inclusions with maximal monotone operators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vladimirov A.A., “Nonstationary dissipative evolution equations in Hilbert space,” Nonlinear Anal., vol. 17, no. 6, 499–518 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  2. Kunze M. and Marques D.P., “BV solutions to evolution problems with time dependent domains,” Set-Valued Anal., vol. 5, no. 1, 57–72 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  3. Tolstonogov A.A., “Sweeping process with unbounded nonconvex perturbation,” Nonlinear Anal., vol. 108, 291–301 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  4. Attouch H. and Wets R.J.-B., “Quantitative stability of variational systems. I. The epigraphical distance,” Trans. Amer. Math. Soc., vol. 328, no. 2, 695–729 (1991).

    MathSciNet  MATH  Google Scholar 

  5. Brezis H., Operateurs maximaux monotones et semi-groupes de contractious dans les espaces de Hilbert, NorthHolland and Elsevier, Amsterdam, London, and New York (1973) (Lecture Notes Math.).

    MATH  Google Scholar 

  6. Attouch H., Variational Convergence for Functions and Operators, Pitman, Boston, London, and Melbourne (1984) (Pitman Adv. Publ. Progr.).

    MATH  Google Scholar 

  7. Attouch H., “Familles d’opérateurs maximaux monotones et mesurabilité,” Ann. Math. Pura Appl., vol. 120, no. 1, 35–111 (1979).

    Article  MATH  Google Scholar 

  8. Tolstonogov A.A., “Comparison theorems for evolution inclusions with maximal monotone operators. \( L^{2} \)-Theory,” Mat. Sb., vol. 214, no. 6, 110–135 (2023).

    MathSciNet  Google Scholar 

  9. Tolstonogov A.A., “Convergence of maximal monotone operators in a Hilbert space,” Nonlinear Differ. Equ. Appl., vol. 6, 29–69 (2022).

    MATH  Google Scholar 

  10. Azzam-Laouir D., Belhoula W., Castaing C., and Marques D.P., “Perturbed evolution problems with absolutely continuous variation in time and applications,” J. Fixed Point. Theory Appl., vol. 21, 40 (2019).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Tolstonogov.

Additional information

Translated from Sibirskii Matematicheskii Zhurnal, 2023, Vol. 64, No. 4, pp. 815–829. https://doi.org/10.33048/smzh.2023.64.413

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tolstonogov, A.A. Distances between Maximal Monotone Operators. Sib Math J 64, 914–926 (2023). https://doi.org/10.1134/S0037446623040134

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0037446623040134

Keywords

UDC

Navigation