Skip to main content
Log in

Solving the Euler–Poisson–Darboux Equation of Fractional Order

  • Published:
Siberian Mathematical Journal Aims and scope Submit manuscript

Abstract

Interest in fractional ordinary and partial differential equations has been steadily increasing in the recent decades. This is due to the necessity of modeling the processes whose current state depends significantly on the previous ones, i.e., the so-called systems with residual memory. We consider the Cauchy problem for the one-dimensional, homogeneous Euler–Poisson–Darboux equation with a differential operator of fractional order in time being the left-sided fractional Bessel operator. At the same time, we use the ordinary differential operator in the space variable of the second order. We reveal the connection between the Meyer and Laplace transform which is obtained by the Poisson transform and presents a special case of the relation with the Obreshkov transformation. We prove the theorem that yields the conditions of the existence of a solution to the problem by using the Meyer transform. In this case, a solution to the problem is represented explicitly in terms of the generalized Green’s function that determines the generalized hypergeometric Fox \( H \)-function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kipriyanov I.A., Singular Elliptic Boundary-Value Problems, Nauka and Fizmatlit, Moscow (1997) [Russian].

    MATH  Google Scholar 

  2. Goldstein S., “On diffusion by discontinuous movements, and on the telegraph equation,” Quart. J. Mech. Appl. Math., vol. 4, no. 2, 129–156 (1951).

    Article  MathSciNet  MATH  Google Scholar 

  3. Kac M., “A stochastic model related to the telegrapher’s equation,” Rocky Mountain J. Math., vol. 4, 497–509 (1974).

    MathSciNet  MATH  Google Scholar 

  4. Orsingher E., “Hyperbolic equations arising in random models,” Stochastic Process. Appl., vol. 21, no. 1, 93–106 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  5. Orsingher E.E., “A planar random motion governed by the two-dimensional telegraph equation,” Stochastic Process. Appl., vol. 23, no. 2, 385–397 (1986).

    MathSciNet  MATH  Google Scholar 

  6. Orsingher E., “Probability law, flow function, maximum distribution of wave-governed random motions, and their connections with Kirchhoff’s laws,” Stochastic Process. Appl., vol. 34, no. 1, 49–66 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  7. De Gregorio A. and Orsingher E., “Random flights connecting porous medium and Euler–Poisson–Darboux equations,” J. Math. Phys., vol. 61, no. 4 (2020) (Article no. 041505, 18 pp.).

  8. Garra R. and Orsingher E., “Random flights related to the Euler–Poisson–Darboux equation,” Markov Process. Related Fields, vol. 22, no. 1, 87–110 (2016).

    MathSciNet  MATH  Google Scholar 

  9. Iacus S., “Statistical Analysis of the Inhomogeneous Telegrapher’s Process,” Statist. Probab. Lett., vol. 55, no. 1, 83–88 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  10. Metzler R. and Klafter J., “The random walk’s guide to anomalous diffusion: A fractional dynamics approach,” Phys. Rep., vol. 339, no. 1, 1–77 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  11. Gorenflo R.R., Vivoli A. and Mainardi F., “Discrete and continuous random walk models for space-time fractional diffusion,” Nonlinear Dynam., vol. 38, no. 1, 101–116 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  12. De Gregorio A. and Orsingher E., “Flying randomly in \( R^{d} \) with Dirichlet displacements,” Stochastic Process. Appl., vol. 122, no. 2, 676–713 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  13. Watson G.N., A Treatise on the Theory of Bessel Functions. 2nd ed., Cambridge University, Cambridge (1996).

    Google Scholar 

  14. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Abramowitz M. and Stegun I.A. (eds.), Dover, New York (1972).

    MATH  Google Scholar 

  15. Kiryakova V., Generalized Fractional Calculus and Applications, Pitman, New York (1994).

    MATH  Google Scholar 

  16. Gorenflo R., Kilbas A.A., Mainardi F., and Rogosin S.V., Mittag-Leffler Functions, Related Topics and Applications, Springer, Berlin and Heidelberg (2016).

    MATH  Google Scholar 

  17. Luchko Yu., “Algorithms for evaluation of the Wright function for the real arguments’ values,” Fract. Calc. Appl. Anal., vol. 11, no. 1, 57–75 (2008).

    MathSciNet  MATH  Google Scholar 

  18. Kilbas A.A. and Saigo M., H-Transforms. Theory and Applications, Chapman and Hall, Boca Raton (2004).

    Book  MATH  Google Scholar 

  19. Stankovic B., “On the function of E.M. Wright,” Publ. Inst. Math. (Beograd) (N.S.), vol. 10, no. 24, 113–124 (1970).

    MathSciNet  MATH  Google Scholar 

  20. Glaeske H.J., Prudnikov A.P. and Skornik K.A., Operational Calculus and Related Topics, Chapman and Hall/CRC, New York (2006).

    MATH  Google Scholar 

  21. Samko S.G., Kilbas A.A., and Marichev O.I., Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, Amsterdam (1993).

    MATH  Google Scholar 

  22. Sprinkhuizen-Kuyper I.G., “A fractional integral operator corresponding to negative powers of a certain second-order differential operator,” J. Math. Anal. Appl., vol. 72, no. 2, 674–702 (1979).

    Article  MathSciNet  MATH  Google Scholar 

  23. McBride A.C., Fractional Calculus and Integral Transforms of Generalized Functions, Pitman, London (1979).

    MATH  Google Scholar 

  24. Shishkina E.L. and Sitnik S.M., “On fractional powers of Bessel operators,” Journal of Inequalities and Special Functions, Special Issue to Honor Prof. Ivan Dimovski’s Contributions, vol. 8, no. 1, 49–67 (2017).

    MathSciNet  Google Scholar 

  25. Shishkina E.L. and Sitnik S.M., “A fractional equation with left-sided fractional Bessel derivatives of Gerasimov–Caputo type,” Mathematics, vol. 7, no. 12, 1–21 (2019).

    Article  Google Scholar 

  26. Gerasimov A.N., “a generalization of linear laws of deformation and its application to problems of internal friction,” Akad. Nauk SSSR, Prikl. Mat. Mekh., vol. 12, 529–539 (1948).

    MathSciNet  Google Scholar 

  27. Kilbas A.A., Srivastava H.M., and Trujillo J.J., Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, Boston, and Heidelberg (2006).

    MATH  Google Scholar 

Download references

Funding

The first author was supported by the Ministry of Science and Higher Education of the Russian Federation (Grant no. 075–02–2022–890).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Dzarakhohov.

Additional information

Translated from Vladikavkazskii Matematicheskii Zhurnal, 2022, Vol. 24, No. 2, pp. 85–100. https://doi.org/10.46698/t3110-3630-4771-f

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dzarakhohov, A.V., Shishkina, E.L. Solving the Euler–Poisson–Darboux Equation of Fractional Order. Sib Math J 64, 707–719 (2023). https://doi.org/10.1134/S0037446623030187

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0037446623030187

Keywords

UDC

Navigation