Skip to main content
Log in

An Inverse Problem for Sturm–Liouville Operators with a Piecewise Entire Potential and Discontinuity Conditions of Solutions on a Curve

  • Published:
Siberian Mathematical Journal Aims and scope Submit manuscript

Abstract

Under consideration is a Sturm–Liouville equation with a piecewise entire potential and discontinuity conditions independent of the spectral parameter for the solutions on an unspecified rectifiable curve lying in the complex plane. We study an inverse spectral problem with respect to the ratio of elements of one column or one row of the transfer matrix and give the conditions of uniqueness of a solution. These results are applied to the inverse problem for the Sturm–Liouville equation with piecewise constant complex weight, piecewise entire potential, and discontinuity conditions on a segment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Levitan B.M., Inverse Sturm–Liouville Problems, VNU Science, Utrecht (1987).

    Book  MATH  Google Scholar 

  2. Marchenko V.A., Sturm–Liouville Operators and Applications, Chelsea, Providence (2011).

    Book  MATH  Google Scholar 

  3. Poeschel J. and Trubowitz E., Inverse Spectral Theory, Academic, New York (1987).

    Google Scholar 

  4. Yurko V.A., “Boundary value problems with discontinuity conditions in an interior point,” Differ. Equ., vol. 36, no. 8, 1266–1269 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  5. Yurko V.A., Method of Spectral Mappings in the Inverse Problem Theory, VSP, Utrecht (2002) (Inverse Ill-Posed Probl. Ser.).

    Book  MATH  Google Scholar 

  6. Savchuk A.M. and Shkalikov A.A., “Inverse problems for Sturm–Liouville operators with potentials in Sobolev spaces: Uniform stability,” Funct. Anal. Appl., vol. 44, no. 4, 270–285 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  7. Wasow W., Asymptotic Expansions for Ordinary Differential Equations, Dover, New York (1987).

    MATH  Google Scholar 

  8. Fedoryuk M.V., Asymptotic Analysis: Linear Ordinary Differential Equations, Springer, Berlin and Heidelberg (1993).

    Book  MATH  Google Scholar 

  9. Ishkin Kh.K., “On localization of the spectrum of the problem with complex weight,” J. Math. Sci. (N. Y.), vol. 150, no. 6, 2488–2499 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  10. Ishkin Kh.K., “Localization criterion for the spectrum of the Sturm–Liouville operator on a curve,” St. Petersburg Math. J., vol. 28, no. 1, 37–63 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  11. Ishkin Kh.K. and Rezbayev A.V., “On the Davies formula for the distribution of eigenvalues of a non-self-adjoint differential operator,” J. Math. Sci. (N. Y.), vol. 252, no. 3, 374–383 (2021).

    Article  MATH  Google Scholar 

  12. Golubkov A.A., “Asymptotics of transfer matrix of Sturm–Liouville equation with piecewise-entire potential function on a curve,” Moscow Univ. Math. Bull., vol. 74, no. 2, 65–69 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  13. Golubkov A.A., “A boundary value problem for the Sturm–Liouville equation with piecewise entire potential on the curve and solution discontinuity conditions,” Sib. Electr. Math. Reports, vol. 16, 1005–1027 (2019).

    MathSciNet  MATH  Google Scholar 

  14. Golubkov A.A., “Spectrum of the Sturm–Liouville operator on a curve with parameters in the boundary conditions and discontinuity conditions for solutions,” in: Modern Methods of the Theory of Boundary Value Problems. Part 4. Proceedings of the Voronezh Spring Mathematical School: “Pontryagin Readings-XXX” (May 3–9, 2019), Tsentr.-Chernozem. Knizh. Izdat., Voronezh (2021), 45–68 [Russian] (Itogi Nauki i Tekhniki. Ser. Sovrem. Mat. Pril. Temat. Obz.; vol. 193).

  15. Ishkin Kh.K., “On a trivial monodromy criterion for the Sturm–Liouville equation,” Math. Notes, vol. 94, no. 4, 508–523 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  16. Golubkov A.A., “Inverse problem for Sturm–Liouville operators in the complex plane,” Izv. Saratov Univ. Math. Mech. Inform., vol. 18, no. 2, 144–156 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  17. Golubkov A.A. and Kuryshova Y.V., “Inverse problem for Sturm–Liouville operators on a curve,” Tamkang J. Math., vol. 50, no. 3, 349–359 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  18. Golubkov A.A., “Inverse problem for the Sturm–Liouville Equation with piecewise entire potential and piecewise constant weight on a curve,” Sib. Electr. Math. Reports, vol. 18, no. 2, 951–974 (2021).

    MathSciNet  MATH  Google Scholar 

  19. Golubkov A.A. and Makarov V.A., “Reconstruction of dielectric permittivity profile of a plate with strong frequency dispersion,” Moscow Univ. Phys. Bull., vol. 64, no. 6, 658–660 (2009).

    Article  Google Scholar 

  20. Golubkov A.A. and Makarov V.A., “Determining the coordinate dependence of some components of the cubic susceptibility tensor \( \widehat{\chi}^{(3)}(z,\omega,-\omega,\omega,\omega) \) of a one-dimensionally inhomogeneous absorbing plate at an arbitrary frequency dispersion,” Quantum Electron., vol. 40, no. 11, 1045–1050 (2010).

    Article  Google Scholar 

  21. Levitan B.M. and Sargsyan I.S., Sturm–Liouville and Dirac Operators, Kluwer, Dordrecht etc. (1990).

    MATH  Google Scholar 

  22. Yurko V.A., Equations of Mathematical Physics, Saratov University, Saratov (2010) [Russian].

    Google Scholar 

  23. Freiling G. and Yurko V.A., “Inverse problems for differential equations with turning points,” Inverse Probl., vol. 13, no. 5, 1247–1263 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  24. Yurko V.A., “Inverse spectral problems for Sturm–Liouville operators with complex weights,” Inverse Probl. Sci. Engineering, vol. 26, no. 10, 1396–1403 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  25. Yurko V.A., “On the inverse problem for differential operators on a finite interval with complex weights,” Math. Notes, vol. 105, no. 2, 301–306 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  26. Duistermaat J.J. and Grünbaum F.A., “Differential equations in the spectral parameter,” Comm. Math. Phys., vol. 103, no. 2, 177–240 (1986).

    Article  MathSciNet  MATH  Google Scholar 

  27. Coddington E.A. and Levinson N., Theory of Ordinary Differential Equations, McGill-Hill Book, New York, Toronto, and London (1955).

    MATH  Google Scholar 

  28. Fikhtengolts G.M., A Course of Differential and Integral Calculus. Vol. 1, Nauka, Moscow (1966) [Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Golubkov.

Additional information

Translated from Sibirskii Matematicheskii Zhurnal, 2023, Vol. 64, No. 3, pp. 485–499. https://doi.org/10.33048/smzh.2023.64.304

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golubkov, A.A. An Inverse Problem for Sturm–Liouville Operators with a Piecewise Entire Potential and Discontinuity Conditions of Solutions on a Curve. Sib Math J 64, 542–553 (2023). https://doi.org/10.1134/S0037446623030047

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0037446623030047

Keywords

UDC

Navigation