Skip to main content
Log in

Spline Representations of Lizorkin–Triebel Spaces with General Weights

  • Published:
Siberian Mathematical Journal Aims and scope Submit manuscript

Abstract

In this paper we introduce some new Lizorkin–Triebel type spaces of variable smoothness. Here the smoothness lies in a new weighted class. We give some equivalent quasinorms and their characterizations via oscillations. We show that the box splines and tensor-products of \( B \)-splines are suitable to obtain the stable representations of functions of these spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Triebel H., Theory of Function Spaces, Basel, Birkhäuser (1983).

    Book  MATH  Google Scholar 

  2. Triebel H., Theory of Function Spaces. II, Basel, Birkhäuser (1992).

    Book  MATH  Google Scholar 

  3. Unterberger A., “Sobolev spaces of variable order and problems of convexity for partial differential operators with constant coefficients,” Astérisque, no. 2, 325–341 (1973).

    MathSciNet  MATH  Google Scholar 

  4. Višik M.I. and Eskin G.I., “Convolution equations of variable order,” Tr. Mosk. Mat. Obsc., vol. 16, 26–49 (1967).

    MathSciNet  Google Scholar 

  5. Unterberger A. and Bokobza J., “Les opérateurs pseudodifférentiels d’ordre variable,” C. R. Math. Acad.Sci. Paris, vol. 261, 2271–2273 (1965).

    MATH  Google Scholar 

  6. Beauzamy B., “Espaces de Sobolev et de Besov d’ordre variable définis sur \( L^{p} \),” C. R. Math. Acad. Sci. Paris, vol. 274, 1935–1938 (1972).

    MATH  Google Scholar 

  7. Peetre J., “On spaces of Triebel–Lizorkin type,” Ark. Math., vol. 13, 123–130 (1975).

    Article  MathSciNet  MATH  Google Scholar 

  8. Leopold H.-G., “On function spaces of variable order of differentiation,” Forum Math., vol. 3, no. 1, 1–21 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  9. Gol’dman M.L., “A description of the traces of some function spaces,” Proc. Steklov Inst. Math., vol. 150, no. 4, 105–133 (1981).

    MATH  Google Scholar 

  10. Gol’dman M.L., “The method of coverings for description of general spaces of Besov type,” Proc. Steklov Inst. Math., vol. 156, no. 2, 51–87 (1983).

    MATH  Google Scholar 

  11. Gol’dman M.L., “Imbedding theorems for anisotropic Nikol’skii–Besov spaces with moduli of continuity of a general type,” Proc. Steklov Inst. Math., vol. 170, no. 1, 95–116 (1987).

    MATH  Google Scholar 

  12. Kalyabin G.A., “Characterization of spaces of generalized Liouville differentiation,” Mat. Sb. (N.S.), vol. 104, no. 1, 42–48 (1977).

    MathSciNet  Google Scholar 

  13. Kalyabin G.A., “Description of functions in classes of Besov–Lizorkin–Triebel type,” Tr. Mat. Inst. Steklova, vol. 156, no. 2, 82–109 (1980).

    MATH  Google Scholar 

  14. Kalyabin G.A., “Characterization of spaces of Besov–Lizorkin and Triebel type by means of generalized differences,” Tr. Mat. Inst. Steklova, vol. 181, no. 4, 95–116 (1988).

    MathSciNet  Google Scholar 

  15. Kalyabin G.A. and Lizorkin P.I., “Spaces of functions of generalized smoothness,” Math. Nachr., vol. 133, 7–32 (1987).

    Article  MathSciNet  Google Scholar 

  16. Besov O.V., “Equivalent normings of spaces of functions of variable smoothness,” Function spaces, approximation, and differential equations,” in: A collection of papers dedicated to the 70th birthday of Oleg Vladimorovich Besov, a corresponding member of the Russian Academy of Sciences, Moscow, Nauka (2003), 87–95 (English translation: Proc. Steklov Inst. Math., vol. 243, 80–88 (2003)).

  17. Besov O.V., “On the interpolation, embedding, and extension of spaces of functions of variable smoothness,” Dokl. Math., vol. 71, no. 2, 163–167 (2005).

    MATH  Google Scholar 

  18. Besov O.V., “Interpolation, embedding, and extension of spaces of functions of variable smoothness,” Proc. Steklov Inst. Math., vol. 248, no. 1, 47–58 (2005).

    MathSciNet  MATH  Google Scholar 

  19. Bony J.-M., “Second microlocalization and propagation of singularities for semi-linear hyperbolic equations,” in: Hyperbolic Equations and Related Topics. Katata, Kyoto, 1984, Academic, Boston (1986), 11–49.

  20. Kempka H., Generalized 2-Microlocal Besov Spaces. Ph.D. Thesis, Jena, Friedrich-Schiller-Universität (2008).

    MATH  Google Scholar 

  21. Almeida A. and Hästö P., “Besov spaces with variable smoothness and integrability,” J. Funct. Anal., vol. 258, no. 5, 1628–1655 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  22. Diening L., Hästö P., and Roudenko S., “Function spaces of variable smoothness and integrability,” J. Funct. Anal., vol. 256, no. 6, 1731–1768 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  23. Kempka H., “Atomic, molecular and wavelet decomposition of 2-microlocal Besov and Triebel-Lizorkin spaces with variable integrability,” Funct. Aprox., vol. 43, no. 2, 171–208 (2010).

    MathSciNet  MATH  Google Scholar 

  24. Kempka H. and Vybíral J., “Spaces of variable smoothness and integrability: Characterizations by local means and ball means of differences,” J. Fourier Anal. Appl., vol. 18, no. 4, 852–891 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  25. Tyulenev A.I., “Some new function spaces of variable smoothness,” Sb. Math., vol. 206, no. 6, 849–891 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  26. Dahmen W. and Micchelli C.A., “Translates of multivariate splines,” Linear Algebra Appl., no. 52, 217–234 (1983).

    MathSciNet  MATH  Google Scholar 

  27. Sickel W., “Spline representations of functions in Besov–Triebel–Lizorkin spaces on \( 𝕉^{n} \),” Forum Math., vol. 2, no. 5, 451–475 (1990).

    MathSciNet  MATH  Google Scholar 

  28. Sickel W., “A remark on orthonormal bases of compactly supported wavelets in Triebel–Lizorkin spaces. The case \( 0<p,q<\infty \),” Arch. Math., vol. 57, no. 3, 281–289 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  29. Rychkov V.S., “Littlewood–Paley theory and function spaces with \( A_{p}^{\operatorname{loc}} \)-weights,” Math. Nachr., vol. 224, no. 1, 145–180 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  30. Mitsuo I. and Sawano Y., “Atomic decomposition for weighted Besov and Triebel–Lizorkin spaces,” Math. Nachr., vol. 285, no. 1, 103–126 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  31. Wojciechowska A., Multidimensional Wavelet Bases in Besov and Lizorkin–Triebel Spaces. Ph.D. Thesis, Poznań, Adam Mickiewicz University Poznań (2012).

    Google Scholar 

  32. Muckenhoupt B., “Weighted norm inequalities for the Hardy maximal function,” Trans. Amer. Math. Soc., vol. 165, 207–226 (1972).

    Article  MathSciNet  MATH  Google Scholar 

  33. Garcia-Cuerva J. and Rubio de Francia J.L., Weighted Norm Inequalities and Related Topics, Amsterdam, North-Holland (1985) (North-Holland Mathematics Studies; vol. 116).

    MATH  Google Scholar 

  34. Stein E.M., Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton University, Princeton (1993) (Princeton Math. Ser., vol. 43).

    MATH  Google Scholar 

  35. Grafakos L., Classical Fourier Analysis. Third Edition, Springer, New York (2014) (Graduate Texts in Math., no. 249).

    Book  MATH  Google Scholar 

  36. Farkas W. and Leopold H.-G., “Characterisations of function spaces of generalised smoothness,” Annali di Mat. Pura Appl., vol. 185, no. 1, 1–62 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  37. Haroske D.D. and Moura S.D., “Continuity envelopes and sharp embeddings in spaces of generalized smoothness,” J. Funct. Anal., vol. 254, no. 6, 1487–1521 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  38. Edmunds D. and Triebel H., “Spectral theory for isotropic fractal drums,” C. R. Acad. Sci. Paris, vol. 326, 1269–1274 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  39. Edmunds D. and Triebel H., “Eigenfrequencies of isotropic fractal drums,” in: Proc. Conf. Functional Analysis, Partial Diff. Equations, Applications, Rostock 1998. Oper. Theory: Adv. and Appl., 110, Basel, Birkhäuser (1999), 81–102.

  40. Bricchi M. and Moura S.D., “Complements on growth envelopes of spaces with generalized smoothness in the sub-critical case,” Z. Anal. Anwend., vol. 22, no. 2, 383–398 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  41. Moura S.D., “Function spaces of generalised smoothness,” Diss. Math., vol. 398, 1–88 (2001).

    MathSciNet  MATH  Google Scholar 

  42. Drihem D., “Besov spaces with general weights,” J. Math. Study, vol. 56, no. 1, 18–92 (2023).

    Article  MATH  Google Scholar 

  43. Tyulenev A.I., “On various approaches to Besov-type spaces of variable smoothness,” J. Math. Anal. Appl., vol. 451, no. 1, 371–392 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  44. Tyulenev A.I., “Besov-type spaces of variable smoothness on rough domains,” Nonlinear Anal., vol. 145, 176–198 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  45. Fefferman C. and Stein E.M., “Some maximal inequalities,” Amer. J. Math., vol. 93, no. 1, 107–115 (1971).

    Article  MathSciNet  MATH  Google Scholar 

  46. Heikkinen T., Ihnatsyeva L., and Tuominen H., “Measure density and extension of Besov and Triebel–Lizorkin functions,” J. Fourier Anal. Appl., vol. 22, no. 2, 334–382 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  47. Nikolskii S.M., Approximation of Functions of Several Variables and Imbedding Theorems, Springer, Berlin (1975).

    Book  Google Scholar 

  48. Sickel W., “On pointwise multipliers for \( F_{p,q}^{s}\left(𝕉^{n}\right) \) in case \( \sigma_{p,q}<s<n/p \),” Ann. Mat. Pura. Appl., vol. 176, 209–250 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  49. Yuan W., Sickel W., and Yang D., Morrey and Campanato Meet Besov, Lizorkin and Triebel, Springer, Berlin (2010) (Lecture Notes Math.; vol. 2005).

    Book  MATH  Google Scholar 

  50. Hedberg L.I. and Netrusov Y.V., “An axiomatic approach to function spaces, spectral synthesis, and Luzin approximation,” Mem. Amer. Math. Soc., vol. 188, no. 882, vi+97 pp. (2007).

    MathSciNet  MATH  Google Scholar 

  51. Brudnyi Yu.A., “Whitney’s inequality for quasi-Banach spaces,” in: Function Spaces and Their Applications to Differential Equations, Moscow, RUDN University (1992), 20–27.

  52. Nevskii M.V., “Approximation of functions in Orlicz classes,” in: Studies in the Theory of Functions of Several Real Variables, Yaroslavl, Yaroslavl. Gos. Univ. (1984), 83–101.

  53. DeVore R.A. and Sharpley R.C., “Maximal functions measuring smoothness,” Mem. Amer. Math. Soc., vol. 47, no. 293, 1–115 (1984).

    MathSciNet  MATH  Google Scholar 

  54. Seeger A., “A note on Triebel–Lizorkin spaces,” Banach Center Publ., vol. 22, no. 1, 391–400 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  55. Dahmen W. and Micchelli C.A., “Recent progress on multivariate splines,” in: Approximation Theory IV, New York, Academic (1983), 27–121.

  56. Dahmen W. and Micchelli C.A., “Some results on box splines,” Bull. Amer. Math. Soc. (N.S.), vol. 11, no. 1, 147–150 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  57. Oswald P., “On the degree of nonlinear spline approximation in Besov-Sobolev spaces,” J. Approx. Theory, vol. 61, no. 2, 131–157 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  58. De Boor C., Splines as Linear Combinations of B-Splines. A Survey, New York, Academic (1976) (Approx. Theory II).

    MATH  Google Scholar 

  59. Schumaker L.L., Spline Functions: Basic Theory, New York, Wiley (1981).

    MATH  Google Scholar 

Download references

Acknowledgments

The author thanks W. Sickel and A. Tyulenev for making several useful suggestions and comments that improved the paper substantially and simplify some proofs. Also, the author gratefully appreciates the anonymous referee for the constructive comments and recommendations that definitely helped improve the readability and quality of the paper.

Funding

This work was supported by the General Directorate of Scientific Research and Technological Development of Algeria and the General Direction of Higher Education and Training (Grant no. C00L03UN280120220004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Drihem.

Additional information

The article was submitted by the author in English.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Drihem, D. Spline Representations of Lizorkin–Triebel Spaces with General Weights. Sib Math J 64, 208–250 (2023). https://doi.org/10.1134/S0037446623010202

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0037446623010202

Keywords

UDC

Navigation