Skip to main content
Log in

On Universal Positive Graphs

  • Published:
Siberian Mathematical Journal Aims and scope Submit manuscript

Abstract

We study the existence of the universal computable numberings and the universal graphs for various classes of positive graphs. It is known that each \( \forall \)-axiomatizable class of graphs \( K \) can be characterized as follows: A graph \( G \) belongs to \( K \) if and only if for a given family of finite graphs \( \mathbf{F} \) no graph in \( \mathbf{F} \) is isomorphically embeddable into \( G \).If all graphs in \( \mathbf{F} \) are weakly connected; then, under additional effectiveness conditions, the corresponding class \( K \) has some universal computable numbering and universal positive graph. The effectiveness conditions hold for forests, bipartite graphs, planar graphs, and \( n \)-colorable graphs (for a fixed number \( n \)). If \( \mathbf{F} \) is a finite family of the graphs with weakly connected complement then the corresponding class \( K \) contains a universal positive graph (in general, a universal computable numbering for \( K \) may fail to exist).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Ershov Yu.L., “Positive equivalences,” Algebra Logic, vol. 10, no. 6, 378–394 (1971).

    Article  MathSciNet  Google Scholar 

  2. Ershov Yu.L., The Theory of Enumerations, Nauka, Moscow (1977) [Russian].

    Google Scholar 

  3. Bernardi C. and Sorbi A., “Classifying positive equivalence relations,” J. Symb. Log., vol. 48, no. 3, 529–538 (1983).

    Article  MathSciNet  MATH  Google Scholar 

  4. Gao S. and Gerdes P., “Computably enumerable equivalence relations,” Stud. Log., vol. 67, no. 1, 27–59 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  5. Andrews U., Lempp S., Miller J. S., Ng K. M., San Mauro L., and Sorbi A., “Universal computably enumerable equivalence relations,” J. Symb. Log., vol. 79, no. 1, 60–88 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  6. Badaev S.A. and Sorbi A., “Weakly precomplete computably enumerable equivalence relations,” Math. Log. Q., vol. 62, no. 1, 111–127 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  7. Bazhenov N.A. and Kalmurzaev B.S., “On dark computably enumerable equivalence relations,” Sib. Math. J., vol. 59, no. 1, 22–30 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  8. Andrews U. and Sorbi A., “Joins and meets in the structure of ceers,” Computability, vol. 8, no. 3, 193–241 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  9. Andrews U. and Badaev S., “On isomorphism classes of computably enumerable equivalence relations,” J. Symb. Log., vol. 85, no. 1, 61–86 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  10. Andrews U., Schweber N., and Sorbi A., “The theory of ceers computes true arithmetic,” Ann. Pure Appl. Logic, vol. 171, no. 8, 102811 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  11. Andrews U., Badaev S.A., and Sorbi A., “A survey on universal computably enumerable equivalence relations,” in: Computability and Complexity, Springer, Cham (2017), 418–451 (Lect. Notes Comput. Sci.; vol. 10010).

  12. Kabylzhanova D.K., “Positive preorders,” Algebra Logic, vol. 57, no. 3, 182–185 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  13. Badaev S.A., Kalmurzayev B.S., Kabylzhanova D.K., and Abeshev K.Sh., “Universal positive preorders,” News of the National Academy of Sciences of the Republic of Kazakhstan: Physico-Mathematical Series, vol. 322, no. 6, 49–53 (2018).

    Google Scholar 

  14. Badaev S.A., Bazhenov N.A., and Kalmurzaev B.S., “The structure of computably enumerable preorder relations,” Algebra Logic, vol. 59, no. 3, 201–215 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  15. Badaev S.A., Kalmurzayev B.S., Mukash N.K., and Khamitova A.A., “Special classes of positive preorders,” Sib. Electr. Math. Reports, vol. 18, no. 2, 1657–1666 (2021).

    MathSciNet  MATH  Google Scholar 

  16. Soare R.I., Turing Computability, Theory and Applications, Springer, Berlin (2016).

    MATH  Google Scholar 

  17. Tarski A., “Contributions to the theory of models I, II,” Indag. Math., vol. 16, 572–588 (1954).

    Article  MATH  Google Scholar 

  18. Maltsev A.I., “Universally axiomatizable subclasses of locally finite classes of models,” Sib. Math. J., vol. 8, no. 5, 764–770 (1967).

    Article  MathSciNet  Google Scholar 

  19. Caicedo X., “Finitely axiomatizable quasivarieties of graphs,” Algebra Universalis, vol. 34, no. 2, 314–321 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  20. Asratian A.S., Denley T.M.J., and Häggkvist R., Bipartite Graphs and Their Applications, Cambridge University, Cambridge (1998).

    Book  MATH  Google Scholar 

  21. Kuratowski C., “Sur le problème des courbes gauches en topologie,” Fund. Math., vol. 15, no. 1, 271–283 (1930).

    Article  MATH  Google Scholar 

  22. Hopcroft J. and Tarjan R., “Efficient planarity testing,” J. Assoc. Comput. Mach., vol. 21, no. 4, 549–568 (1974).

    Article  MathSciNet  MATH  Google Scholar 

  23. Wagner K., “Fastplättbare Graphen,” J. Comb. Theory, vol. 3, no. 4, 326–365 (1967).

    Article  MATH  Google Scholar 

  24. Thomassen C., “Straight line representations of infinite planar graphs,” J. Lond. Math. Soc., II. Ser., vol. 16, 411–423 (1977).

    Article  MathSciNet  MATH  Google Scholar 

  25. De Bruijn N.G. and Erdös P., “A colour problem for infinite graphs and a problem in the theory of relations,” Indag. Math., vol. 13, 369–373 (1951).

    MathSciNet  MATH  Google Scholar 

  26. Schmerl J.H., “Graph coloring and reverse mathematics,” Math. Log. Q., vol. 46, no. 4, 543–548 (2000).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

The research was supported by the Science Committee of the Republic of Kazakhstan (Grant no. AP08856493 “Positive Graphs and Computable Reducibility on Them as Mathematical Models of Databases”). The work of Bazhenov was carried out in the framework of the State Task to the Sobolev Institute of Mathematics (Project FWNF–2022–0011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. S. Kalmurzaev.

Additional information

Translated from Sibirskii Matematicheskii Zhurnal, 2023, Vol. 64, No. 1, pp. 98–112. https://doi.org/10.33048/smzh.2023.64.110

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalmurzaev, B.S., Bazhenov, N.A. & Alish, D.B. On Universal Positive Graphs. Sib Math J 64, 83–93 (2023). https://doi.org/10.1134/S003744662301010X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S003744662301010X

Keywords

UDC

Navigation