Skip to main content
Log in

Hardy-Type Inequalities for the Jacobi Weight with Applications

  • Published:
Siberian Mathematical Journal Aims and scope Submit manuscript

Abstract

We prove some new Hardy-type inequalities for the Jacobi weight function. The resulting inequalities contain additional terms with the weight functions characteristic of Poincaré–Friedrichs inequalities. One of the constants in the inequality is unimprovable. We apply the inequalities to extending the available classes of univalent analytic functions in simply-connected domains and find univalence conditions in terms of estimates for the Schwartz derivative of an analytic function on the unit disk, the exterior of the unit disk, and the right half-plane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hardy G.H., Littlewood J.E., and Pólya G., Inequalities, Cambridge University, Cambridge (1973).

    MATH  Google Scholar 

  2. Maz’ya V.G., Sobolev Spaces, Springer, Berlin and Heidelberg (1985).

    Book  MATH  Google Scholar 

  3. Kufner A. and Persson L.E., Weighted Inequalities of Hardy Type, World Sci., New Jersey, London, Singapore, and Hong Kong (2003).

    Book  MATH  Google Scholar 

  4. Balinsky A.A., Evans W.D., and Lewis R.T., The Analysis and Geometry of Hardy’s Inequality, Springer, Heidelberg, New York, Dordrecht, and London (2015).

    Book  MATH  Google Scholar 

  5. Ruzhansky M. and Suragan D., Hardy Inequalities on Homogeneous Groups, Birkhäuser, Basel (2019).

    Book  MATH  Google Scholar 

  6. Sobolev S.L., Some Applications of Functional Analysis in Mathematical Physics, Amer. Math. Soc., Providence (1991).

    MATH  Google Scholar 

  7. Prokhorov D.V., Stepanov V.D., and Ushakova E.P., “Hardy–Steklov integral operators,” Proc. Steklov Inst. Math., vol. 300, no. suppl. 2, 1–112 (2018).

    MathSciNet  MATH  Google Scholar 

  8. Persson L.E. and Stepanov V.D., “Weighted integral inequalities with the geometric mean operator,” J. Inequal. Appl., vol. 7, no. 5, 727–746 (2002).

    MathSciNet  MATH  Google Scholar 

  9. Bandaliyev R.A., Serbetci A., and Hasanov S.G., “On Hardy inequality in variable Lebesgue spaces with mixed norm,” Indian J. Pure Appl. Math., vol. 49, no. 4, 765–782 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  10. Avkhadiev F.G. and Wirths K.-J., “Sharp Hardy-type inequalities with Lamb’s constants,” Bull. Belg. Math. Soc. Simon Stevin., vol. 18, no. 4, 723–736 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  11. Avkhadiev F.G., “A geometric description of domains whose Hardy constant is equal to 1/4,” Izv. Math., vol. 78, no. 5, 855–876 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  12. Avkhadiev F.G., “Hardy–Rellich integral inequalities in domains satisfying the exterior sphere condition,” St. Petersburg Math. J., vol. 30, no. 2, 161–179 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  13. Avkhadiev F.G., “Hardy-type inequalities on planar and spatial open sets,” Proc. Steklov Inst. Math., vol. 255, 2–12 (2006).

    Article  MATH  Google Scholar 

  14. Brezis H. and Marcus M., “Hardy’s inequalities revisited,” Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), vol. 25, no. 2, 217–237 (1998).

    MathSciNet  MATH  Google Scholar 

  15. Filippas S., Maz’ya V.G., and Tertikas A., “On a question of Brezis and Marcus,” Calc. Var. Partial Differential Equations, vol. 25, no. 4, 491–501 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  16. Hoffmann-Ostenhof M., Hoffmann-Ostenhof T., and Laptev A., “A geometrical version of Hardy’s inequality,” J. Funct. Anal., vol. 189, no. 2, 539–548 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  17. Matskewich T. and Sobolevskii P.E., “The best possible constant in a generalized Hardy’s inequality for convex domains in \( R^{n} \),” Nonlinear Anal., vol. 28, no. 9, 1601–1610 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  18. Marcus M., Mitzel V.J., and Pinchover Y., “On the best constant for Hardy’s inequality in \( R^{n} \),” Trans. Amer. Math. Soc., vol. 350, no. 8, 3237–3255 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  19. Nasibullin R.G. and Makarov R.V., “Hardy’s inequalities with remainders and Lamb-type equations,” Sib. Math. J., vol. 61, no. 6, 1102–1119 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  20. Makarov R.V. and Nasibullin R.G., “Hardy type inequalities and parametric Lamb equation,” Indagat. Math., vol. 31, no. 4, 632–649 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  21. Avkhadiev F.G., Nasibullin R.G., and Shafigullin I.K., “Conformal invariants of hyperbolic planar domains,” Ufa Math. J., vol. 11, no. 2, 3–18 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  22. Avkhadiev F.G., “Integral inequalities in domains of hyperbolic domains and their applications,” Sb. Math., vol. 206, no. 12, 1657–1681 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  23. Fernández J.L. and Rodríguez J.M., “The exponent of convergence of Riemann surfaces, bass Riemann surfaces,” Ann. Acad. Sci. Fenn. Ser. A. I. Mathematica, vol. 15, 165–183 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  24. Dubinskii Yu.A., “A Hardy-type inequality and its applications,” Proc. Steklov Inst. Math., vol. 269, 106–126 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  25. Del Pino M., Dolbeault J., Filippas S., and Tertikas A., “A logarithmic Hardy inequality,” J. Funct. Anal., vol. 259, no. 8, 2045–2072 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  26. Levin V.I., “Notes on inequalities. II. On a class of integral inequalities,” Rec. Math., vol. 4, 309–325 (1938).

    MATH  Google Scholar 

  27. Beesack P.R., “Hardy’s inequality and its extensions,” Pacific J. Math., vol. 11, no. 1, 39–61 (1961).

    Article  MathSciNet  MATH  Google Scholar 

  28. Tomaselli G., “A class of inequalities,” Boll. Un. Mat. Ital., vol. 2, 622–631 (1969).

    MathSciNet  MATH  Google Scholar 

  29. Muckenhoupt B., “Hardy’s inequality with weights,” Stud. Math., vol. 44, no. 1, 31–38 (1972).

    Article  MathSciNet  MATH  Google Scholar 

  30. Sinnamon G. and Stepanov V.D., “The weighted Hardy inequality: new proofs and the case \( p=1 \),” J. London Math. Soc., vol. 54, no. 1, 89–101 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  31. Persson L.-E., Shambilova G.E., and Stepanov V.D., “Weighted Hardy type inequalities for supremum operators on the cones of monotone functions,” J. Inequal. Appl., vol. 2016, Paper No. 237 (18 pages) (2016).

    MathSciNet  MATH  Google Scholar 

  32. Nehari Z., “The Schwarzian derivative and schlicht functions,” Bull. Amer. Math. Soc., vol. 5, no. 6, 545–551 (1949).

    Article  MathSciNet  MATH  Google Scholar 

  33. Avkhadiev F.G., Aksent’ev L.A., and Elizarov A.M., “Sufficient conditions for the finite-valence of analytic functions, and their applications,” J. Math. Sci. (N. Y.), vol. 49, no. 1, 715–799 (1990).

    MATH  Google Scholar 

  34. Avkhadiev F.G. and Aksent’ev L.A., “The main results on sufficient conditions for an analytic function to be schlicht,” Russian Math. Surveys, vol. 30, no. 4, 1–63 (1975).

    Article  MATH  Google Scholar 

  35. Nehari Z., “Some criteria of univalence,” Proc. Amer. Math. Soc., vol. 5, 700–704 (1954).

    Article  MathSciNet  MATH  Google Scholar 

  36. Yamashita S., “Inequalities for the Schwarzian derivative,” Indiana Univ. Math. J., vol. 28, no. 1, 131–135 (1979).

    Article  MathSciNet  MATH  Google Scholar 

  37. Aharonov D. and Elias U., “Univalence criteria depending on parameters,” Anal. Math. Phys., vol. 4, no. 2, 23–34 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  38. Nasibullin R., “Avkhadiev–Backer type \( p \)-valent conditions for biharmonic functions,” Anal. Math. Phys., vol. 11, no. 80 (2021). doi 10./007/s13324-021-00505-4

  39. Graf S.Yu., “Nehari type theorems and uniform local univalence of harmonic mappings,” Russian Math. (Iz. VUZ. Matematika), vol. 63, no. 12, 49–60 (2019).

    MathSciNet  MATH  Google Scholar 

  40. Watson G.N., A Treatise on the Theory of the Bessel Functions, Cambridge University, Cambridge (1966).

    MATH  Google Scholar 

Download references

Acknowledgment

The author is grateful to Professor Avkhadiev for the valuable suggestions that helped improve this article.

Funding

The author was supported by the Russian Science Foundation (Grant no. 18–11–00115).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. G. Nasibullin.

Additional information

Translated from Sibirskii Matematicheskii Zhurnal, 2022, Vol. 63, No. 6, pp. 1313–1333. https://doi.org/10.33048/smzh.2022.63.612

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nasibullin, R.G. Hardy-Type Inequalities for the Jacobi Weight with Applications. Sib Math J 63, 1121–1139 (2022). https://doi.org/10.1134/S003744662206012X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S003744662206012X

Keywords

UDC

Navigation