Skip to main content
Log in

Sub-Lorentzian Coarea Formula for Mappings of Carnot Groups

  • Published:
Siberian Mathematical Journal Aims and scope Submit manuscript

Abstract

Considering the class of contact mappings of Carnot groups with a multidimensional sub-Lorentzian structure on the preimages, we prove that the tangent plane approximates the level sets to a higher order than in the classical case. We also obtain a coarea formula for such mappings with a sub-Lorentzian measure on the level sets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Miklyukov V. M., Klyachin A. A., and Klyachin V. A., Maximal Surfaces in Minkowski Space-Time (2011). http://www.uchimsya.info/maxsurf.pdf

    MATH  Google Scholar 

  2. Berestovskii V. N. and Gichev V. M., “Metrized left-invariant orders on topological groups,” St. Petersburg Math. J., vol. 11, no. 4, 543–565 (2000).

    MathSciNet  MATH  Google Scholar 

  3. Grochowski M., “Reachable sets for the Heisenberg sub-Lorentzian structure on \( 𝕉^{3} \). An estimate for the distance function,” J. Dyn. Control Syst., vol. 12, no. 2, 145–160 (2006).

    Article  MathSciNet  Google Scholar 

  4. Grochowski M., “Properties of reachable sets in the sub-Lorentzian geometry,” J. Geom. Phys., vol. 59, no. 7, 885–900 (2009).

    Article  MathSciNet  Google Scholar 

  5. Grochowski M., “Normal forms and reachable sets for analytic Martinet sub-Lorentzian structures of Hamiltonian type,” J. Dyn. Control Syst., vol. 17, no. 1, 49–75 (2011).

    Article  MathSciNet  Google Scholar 

  6. Grochowski M., “Reachable sets for contact sub-Lorentzian metrics on \( 𝕉^{3} \). Application to control affine systems with the scalar input,” J. Math. Sci., vol. 177, no. 3, 383–394 (2011).

    MathSciNet  MATH  Google Scholar 

  7. Grochowski M., “The structure of reachable sets for affine control systems induced by generalized Martinet sub-Lorentzian metrics,” ESAIM Control Optim. Calc. Var., vol. 18, no. 4, 1150–1177 (2012).

    Article  MathSciNet  Google Scholar 

  8. Grochowski M., “The structure of reachable sets and geometric optimality of singular trajectories for certain affine control systems in \( 𝕉^{3} \). The sub-Lorentzian approach,” J. Dyn. Control Syst., vol. 20, no. 1, 59–89 (2014).

    Article  MathSciNet  Google Scholar 

  9. Grochowski M., “Geodesics in the sub-Lorentzian geometry,” Bull. Polish Acad. Sci. Math., vol. 50, no. 2, 161–178 (2002).

    MathSciNet  MATH  Google Scholar 

  10. Grochowski M., “Remarks on the global sub-Lorentzian geometry,” Anal. Math. Phys., vol. 3, no. 4, 295–309 (2013).

    Article  MathSciNet  Google Scholar 

  11. Korolko A. and Markina I., “Nonholonomic Lorentzian geometry on some H-type groups,” J. Geom. Anal., vol. 19, no. 4, 864–889 (2009).

    Article  MathSciNet  Google Scholar 

  12. Korolko A. and Markina I., “Geodesics on H-type quaternion groups with sub-Lorentzian metric and their physical interpretation,” Complex Anal. Oper. Theory, vol. 4, no. 3, 589–618 (2010).

    Article  MathSciNet  Google Scholar 

  13. Krym V. R. and Petrov N. N., “Equations of motion of a charged particle in a five-dimensional model of the general theory of relativity with a nonholonomic four-dimensional velocity space,” Vestn. St. Petersburg Univ. Math., vol. 40, no. 1, 52–60 (2007).

    Article  MathSciNet  Google Scholar 

  14. Krym V. R. and Petrov N. N., “The curvature tensor and the Einstein equations for a four-dimensional nonholonomic distribution,” Vestn. St. Petersburg Univ. Math., vol. 41, no. 3, 256–265 (2008).

    Article  MathSciNet  Google Scholar 

  15. Craig W. and Weinstein S., “On determinism and well-posedness in multiple time dimensions,” Proc. R. Soc. A., vol. 465, no. 2110, 3023–3046 (2008).

    Article  MathSciNet  Google Scholar 

  16. Bars I. and Terning J., Extra Dimensions in Space and Time, Springer, New York (2010).

    Book  Google Scholar 

  17. Velev M., “Relativistic mechanics in multiple time dimensions,” Physics Essays, vol. 25, no. 3, 403–438 (2012).

    Article  Google Scholar 

  18. Karmanova M. and Vodopyanov S., “A coarea formula for smooth contact mappings of Carnot–Carathéodory spaces,” Acta Appl. Math., vol. 128, no. 1, 67–111 (2013).

    Article  MathSciNet  Google Scholar 

  19. Karmanova M. B., “The coarea formula for vector functions on carnot groups with sub-lorentzian structure,” Sib. Math. J., vol. 62, no. 2, 239–261 (2021).

    Article  Google Scholar 

  20. Folland G. B. and Stein E. M., Hardy Spaces on Homogeneous Groups, Princeton University, Princeton (1982).

    MATH  Google Scholar 

  21. Pansu P., “Métriques de Carnot–Carathéodory et quasi-isométries des espaces symétriques de rang un,” Ann. Math., vol. 129, no. 1, 1–60 (1989) [French].

    Article  MathSciNet  Google Scholar 

  22. Vodopyanov S., “Geometry of Carnot–Carathéodory spaces and differentiability of mappings,” in: The Interaction of Analysis and Geometry. Contemporary Mathematics, vol. 424, Amer. Math. Soc., Providence (2007), 247–301 (Contemporary Mathematics; V. 424).

  23. Karmanova M. B., “The area of graphs on arbitrary Carnot groups with sub-Lorentzian structure,” Sib. Math. J., vol. 61, no. 4, 648–670 (2020).

    Article  MathSciNet  Google Scholar 

  24. Karmanova M. B., “Two-step sub-Lorentzian structures and graph surfaces,” Izv. Math., vol. 84, no. 1, 52–94 (2020).

    Article  MathSciNet  Google Scholar 

  25. Ostrowsky A., “Sur la détermination des bornes inférieures pour une classe des déterminants,” Bull. Sci. Math., vol. 61, 19–32 (1937).

    Google Scholar 

  26. Vodopyanov S. K. and Ukhlov A. D., “Set functions and their applications in the theory of Lebesgue and Sobolev spaces. I,” Siberian Adv. Math., vol. 14, no. 4, 78–125 (2004).

    MathSciNet  MATH  Google Scholar 

  27. Vodopyanov S. K. and Ukhlov A. D., “Set functions and their applications in the theory of Lebesgue and Sobolev spaces. II,” Siberian Adv. Math., vol. 15, no. 1, 91–125 (2005).

    MathSciNet  Google Scholar 

Download references

Funding

The author was supported by the Mathematical Center in Akademgorodok under Agreement 075–15–2022–281 on 05.04.2022 with the Ministry of Science and Higher Education of the Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. B. Karmanova.

Additional information

Translated from Sibirskii Matematicheskii Zhurnal, 2022, Vol. 63, No. 3, pp. 587–612. https://doi.org/10.33048/smzh.2022.63.309

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karmanova, M.B. Sub-Lorentzian Coarea Formula for Mappings of Carnot Groups. Sib Math J 63, 485–508 (2022). https://doi.org/10.1134/S0037446622030090

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0037446622030090

Keywords

UDC

Navigation