Skip to main content
Log in

On the Constants in the Inverse Theorems for the Norms of Derivatives

  • Published:
Siberian Mathematical Journal Aims and scope Submit manuscript

Abstract

We propose a new method for proving the classical inverse theorems of the theory of approximation by trigonometric polynomials and entire functions of exponential type. The method is based on the construction of identities expressing the derivatives of a function itself and of its trigonometrical conjugate in terms of convolution operators. As a consequence, we reduce the constants in the estimates of the norms of the derivatives in terms of best approximations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akhiezer N. I., Lectures on Approximation Theory, Nauka, Moscow (1965) [Russian].

    Google Scholar 

  2. Timan A. F., Theory of Approximation of Functions of a Real Variable, Dover, New York (1994).

    Google Scholar 

  3. Wilmes G., “On Riesz-type inequalities and \( K \)-functionals related to Riesz potentials in \( 𝕉^{N} \),” Numer. Funct. Anal. Optim., vol. 1, no. 1, 57–77 (1979).

    Article  MathSciNet  Google Scholar 

  4. Stepanets A. I., Methods of Approximation Theory, VSP, Leiden (2005).

    Book  Google Scholar 

  5. Bernstein S. N., “On the best approximation of continuous functions with polynomials of a given degree,” in: Collected Works. Vol. 1, Akad. Nauk SSSR, Moscow (1952), 11–104.

  6. Sterlin M. D., “Inverse extremal problems in constructive function theory,” Soviet Math. Dokl., vol. 17, no. 3, 1065–1068 (1977).

    MATH  Google Scholar 

  7. Stechkin S. B., “On best approximation of conjugate functions by trigonometric polynomials,” Izv. Akad. Nauk SSSR Ser. Mat., vol. 20, 197–206 (1956).

    MathSciNet  Google Scholar 

  8. Bari N. K. and Stechkin S. B., “Best approximations and differential properties of two conjugate functions,” Trudy Moskov. Mat. Obshch., vol. 5, 483–521 (1956).

    MathSciNet  Google Scholar 

  9. Stepanets A. I., “Inverse theorems on approximation of periodic functions,” Ukrainian Math. J., vol. 47, no. 9, 1441–1448 (1995).

    Article  MathSciNet  Google Scholar 

  10. Simonov B. V. and Tikhonov S. Yu., “On embeddings of function classes defined by constructive characteristics,” Banach Center Publ., vol. 72, 285–307 (2006).

    Article  MathSciNet  Google Scholar 

  11. Simonov B. V. and Tikhonov S. Yu., “Embedding theorems in constructive approximation,” Sb. Math., vol. 199, no. 9, 1367–1407 (2008).

    Article  MathSciNet  Google Scholar 

  12. Potapov M. K., Simonov B. V., and Tikhonov S. Yu., Fractional Moduli of Smoothness, Maks Press, Moscow (2016) [Russian].

    Google Scholar 

  13. Taberski R., “Contribution to fractional analysis and exponential approximation,” Funct. Approx. Comment. Math., vol. 15, 81–106 (1986).

    MathSciNet  MATH  Google Scholar 

  14. Timan A. F., “Best approximation and modulus of smoothness of functions prescribed on the entire real axis,” Izv. Vyssh. Uchebn. Zaved. Mat., vol. 6, 108–120 (1961).

    MathSciNet  Google Scholar 

  15. Sterlin M. D., “Estimates of constants in inverse theorems of constructive function theory,” Soviet Math. Dokl., vol. 14, no. 6, 647–650 (1973).

    MATH  Google Scholar 

  16. Zhuk V. V., Approximation of Periodic Functions, Leningrad University, Leningrad (1982) [Russian].

    MATH  Google Scholar 

  17. Shapiro H. S., “Some Tauberian theorems with applications to approximation theory,” Bull. Amer. Math. Soc., vol. 74, no. 3, 500–504 (1968).

    Article  MathSciNet  Google Scholar 

  18. Vinogradov O. L., “On the constants in inverse theorems for the first-order derivative,” Vestnik St. Petersburg University, Math., vol. 54, no. 4, 334–344 (2021).

    Article  Google Scholar 

  19. Stein E. M., Singular Integrals and Differentiability Properties of Functions, Princeton University, Princeton (1970).

    MATH  Google Scholar 

  20. Vinogradov O. L., “Sharp Jackson type inequalities for approximation of classes of convolutions by entire functions of finite degree,” St. Petersburg Math. J., vol. 17, no. 4, 593–633 (2006).

    Article  MathSciNet  Google Scholar 

  21. Natanson G. I., “An estimate for Lebesgue constants of the Vallée-Poussin sums,” in: Geometric Problems of the Theory of Functions and Sets, Kalinin University, Kalinin (1986), 102–107 [Russian].

  22. Fikhtengolts G. M., A Course of Differential and Integral Calculus. Vol. 2, Fizmatgiz, Moscow (1959) [Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. L. Vinogradov.

Additional information

Translated from Sibirskii Matematicheskii Zhurnal, 2022, Vol. 63, No. 3, pp. 531–544. https://doi.org/10.33048/smzh.2022.63.305

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vinogradov, O.L. On the Constants in the Inverse Theorems for the Norms of Derivatives. Sib Math J 63, 438–450 (2022). https://doi.org/10.1134/S0037446622030053

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0037446622030053

Keywords

UDC

Navigation