Skip to main content
Log in

Essentially Invertible Measurable Operators Affiliated to a Semifinite von Neumann Algebra and Commutators

  • Published:
Siberian Mathematical Journal Aims and scope Submit manuscript

Abstract

Suppose that a von Neumann operator algebra \( {\mathcal{M}} \) acts on a Hilbert space \( {\mathcal{H}} \) and \( \tau \) is a faithful normal semifinite trace on \( {\mathcal{M}} \). If Hermitian operators \( X,Y\in S({\mathcal{M}},\tau) \) are such that \( -X\leq Y\leq X \) and \( Y \) is \( \tau \)-essentially invertible then so is \( X \). Let \( 0<p\leq 1 \). If a \( p \)-hyponormal operator \( A\in S({\mathcal{M}},\tau) \) is right \( \tau \)-essentially invertible then \( A \) is \( \tau \)-essentially invertible. If a \( p \)-hyponormal operator \( A\in{\mathcal{B}}({\mathcal{H}}) \) is right invertible then \( A \) is invertible in \( {\mathcal{B}}({\mathcal{H}}) \). If a hyponormal operator \( A\in S({\mathcal{M}},\tau) \) has a right inverse in \( S({\mathcal{M}},\tau) \) then \( A \) is invertible in \( S({\mathcal{M}},\tau) \). If \( A,T\in{\mathcal{M}} \) and \( \mu_{t}(A^{n})^{\frac{1}{n}}\to 0 \) as \( n\to\infty \) for every \( t>0 \) then \( AT \) (\( TA \)) has no right (left) \( \tau \)-essential inverse in \( S({\mathcal{M}},\tau) \). Suppose that \( {\mathcal{H}} \) is separable and \( \dim{\mathcal{H}}=\infty \). A right (left) essentially invertible operator \( A\in{\mathcal{B}}({\mathcal{H}}) \) is a commutator if and only if the right (left) essential inverse of \( A \) is a commutator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tembo I. D., “Invertibility in the algebra of \( \tau \)-measurable operators,” in: Operator Algebras, Operator Theory and Applications, Birkhäuser, Basel (2010), 245–256 (Oper. Theory Adv. Appl.; Vol. 195).

  2. Bikchentaev A. M., “On \( \tau \)-essentially invertibility of \( \tau \)-measurable operators,” Internat. J. Theor. Phys., vol. 60, no. 2, 567–575 (2021).

    Article  MathSciNet  Google Scholar 

  3. Caspers M., Potapov D., Sukochev F., and Zanin D., “Weak type commutator and Lipschitz estimates: resolution of the Nazarov–Peller conjecture,” Amer. J. Math., vol. 141, no. 3, 593–610 (2019).

    Article  MathSciNet  Google Scholar 

  4. Ber A. F., Kudaybergenov K. K., and Sukochev F. A., “Derivations on Murray–von Neumann algebras,” Russian Math. Surveys, vol. 74, no. 5, 950–952 (2019).

    Article  MathSciNet  Google Scholar 

  5. Bikchentaev A. and Sukochev F., “Inequalities for the block projection operators,” J. Funct. Anal., vol. 280, no. 7 (2021) (Article no. 108851 (18 pp.)).

  6. Takesaki M., Theory of Operator Algebras. I. Operator Algebras and Non-Commutative Geometry V, Springer, Berlin (2002) (Encyclopaedia of Mathematical Sciences; Vol. 124).

    MATH  Google Scholar 

  7. Takesaki M., Theory of Operator Algebras. II. Operator Algebras and Non-Commutative Geometry VI, Springer, Berlin (2003) (Encyclopaedia of Mathematical Sciences; Vol. 125).

    Book  Google Scholar 

  8. Fack T. and Kosaki H., “Generalized \( s \)-numbers of \( \tau \)-measurable operators,” Pacific J. Math., vol. 123, no. 2, 269–300 (1986).

    Article  MathSciNet  Google Scholar 

  9. Stroh A. and West G. P., “\( \tau \)-Compact operators affiliated to a semifinite von Neumann algebra,” Proc. Roy. Irish Acad. Sect. A, vol. 93, no. 1, 73–86 (1993).

    MathSciNet  MATH  Google Scholar 

  10. Bikchentaev A., “Paranormal measurable operators affiliated with a semifinite von Neumann algebra. II,” Positivity, vol. 24, no. 5, 1487–1501 (2020).

    Article  MathSciNet  Google Scholar 

  11. Bikchentaev A. M., “Two classes of \( \tau \)-measurable operators affiliated with a von Neumann algebra,” Russian Math. (Iz. VUZ), vol. 61, no. 1, 76–80 (2017).

    Article  MathSciNet  Google Scholar 

  12. Halmos P. R. and Sunder V. S., Bounded Integral Operators on \( L^{2} \) Spaces, Springer, Berlin, Heidelberg, and New York (1978).

    Book  Google Scholar 

  13. Bikchentaev A. and Sukochev F., “When weak and local measure convergence implies norm convergence,” J. Math. Anal. Appl., vol. 473, no. 2, 1414–1431 (2019).

    Article  MathSciNet  Google Scholar 

  14. Bikchentaev A. M., “On a lemma of Berezin,” Math. Notes, vol. 87, no. 5, 768–773 (2010).

    Article  MathSciNet  Google Scholar 

  15. Bikchentaev A. M., “On the representation of elements of a von Neumann algebra in the form of finite sums of products of projections. III. Commutators in \( C^{*} \)-algebras,” Sb. Math., vol. 199, no. 4, 477–493 (2008).

    Article  MathSciNet  Google Scholar 

  16. Hansen F., “An operator inequality,” Math. Ann., vol. 246, no. 3, 249–250 (1980).

    Article  MathSciNet  Google Scholar 

  17. Lyubich Yu. I., “Linear functional analysis,” in: Contemporary Problems of Mathematics. Fundamental Trends. Russian, vol. 19, VINITI, Moscow (1988), 5–316 (Itogi Nauki i Tekhniki).

  18. Halmos P. R., A Hilbert Space Problem Book, Springer, New York (1982).

    Book  Google Scholar 

  19. Glazman I. M. and Lyubich Yu. I., Finite-Dimensional Linear Analysis: A Systematic Presentation in Problem Form, M.I.T., Cambridge and London (1974).

    MATH  Google Scholar 

  20. Bikchentaev A. M., “Convergence of integrable operators affiliated to a finite von Neumann algebra,” Proc. Steklov Inst. Math., vol. 293, 67–76 (2016).

    Article  MathSciNet  Google Scholar 

  21. Bikchentaev A. M., “Inequalities for determinants and characterization of the trace,” Sib. Math. J., vol. 61, no. 2, 248–254 (2020).

    Article  MathSciNet  Google Scholar 

  22. Hall B., Lie Groups, Lie Algebras, and Representations. An Elementary Introduction. Second edition, Springer, Cham (2015) (Graduate Texts Math.; Vol. 222).

    Book  Google Scholar 

Download references

Funding

The research was carried out in the framework of the Development Program of the Scientific Educational Mathematical Center of the Volga Federal District (Agreement 075–02–2022–882).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Bikchentaev.

Additional information

Translated from Sibirskii Matematicheskii Zhurnal, 2022, Vol. 63, No. 2, pp. 272–282. https://doi.org/10.33048/smzh.2022.63.203

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bikchentaev, A.M. Essentially Invertible Measurable Operators Affiliated to a Semifinite von Neumann Algebra and Commutators. Sib Math J 63, 224–232 (2022). https://doi.org/10.1134/S0037446622020033

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0037446622020033

Keywords

UDC

Navigation