Skip to main content
Log in

Some Positive Conclusions Related to the Embrechts–Goldie Conjecture

  • Published:
Siberian Mathematical Journal Aims and scope Submit manuscript

Abstract

We give some conditions under which if an infinitely divisible distribution supported on \( [0,\infty) \) belongs to the intersection of the distribution class \( {\mathfrak{L}}(\gamma) \) for some \( \gamma\geq 0 \) and the distribution class \( {\mathfrak{OS}} \), then so does the corresponding Lévy distribution or its convolution with itself. To this end, we discuss the closure under compound convolution roots for the class and provide some types of distributions satisfying the above conditions. Therefore, this leads to some positive conclusions related to the Embrechts–Goldie conjecture in contrast to the fact that all corresponding previous results for the distribution class \( {\mathfrak{L}}(\gamma)\cap{\mathfrak{OS}} \) were negative.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Feller W., An Introduction to Probability Theory and Its Applications, Wiley, New York etc. (1971).

    MATH  Google Scholar 

  2. Bertoin J. and Doney R. A., “Some asymptotic results for transient random walks,” Adv. Appl. Probab., vol. 28, no. 1, 207–226 (1996).

    Article  MathSciNet  Google Scholar 

  3. Chistyakov V. P., “A theorem on sums of independent positive random variables and its applications to branching random processes,” Theory Probab. Appl., vol. 9, no. 4, 640–648 (1964).

    Article  MathSciNet  Google Scholar 

  4. Chover J., Ney P., and Wainger S., “Functions of probability measures,” J. Anal. Math., vol. 26, 255–302 (1973).

    Article  MathSciNet  Google Scholar 

  5. Chover J., Ney P., and Wainger S., “Degeneracy properties of subcritical branching processes,” Ann. Probab., vol. 1, 663–673 (1973).

    Article  MathSciNet  Google Scholar 

  6. Tang Q. and Tsitsiashvili G., “Precise estimates for the ruin probability in finite horizon in a discrete-time model with heavy-tailed insurance and financial risks,” Stochastic Process. Appl., vol. 108, no. 2, 299–325 (2003).

    Article  MathSciNet  Google Scholar 

  7. Pakes A. G., “Convolution equivalence and infinite divisibility,” J. Appl. Probab., vol. 41, no. 2, 407–424 (2004).

    Article  MathSciNet  Google Scholar 

  8. Zachary S. and Foss S. G., “On the exact distributional asymptotics for the supremum of a random walk with increments in a class of light-tailed distributions,” Sib. Math. J., vol. 47, no. 6, 1034–1041 (2006).

    Article  Google Scholar 

  9. Klüppelberg C., “Asymptotic ordering of distribution functions and convolution semigroups,” Semigroup Forum, vol. 40, no. 1, 77–92 (1990).

    Article  MathSciNet  Google Scholar 

  10. Shimura T. and Watanabe T., “Infinite divisibility and generalized subexponentiality,” Bernoulli, vol. 11, no. 3, 445–469 (2005).

    Article  MathSciNet  Google Scholar 

  11. Embrechts P., Goldie C. M., and Veraverbeke N., “Subexponentiality and infinite divisibility,” Z. Wahrscheinlichkeitstheor. Verw. Geb., vol. 49, 335–347 (1979).

    Article  MathSciNet  Google Scholar 

  12. Sgibnev M. S., “Asymptotics of infinite divisibility on \( 𝕉 \),” Sib. Mat. J., vol. 31, no. 1, 115–119 (1990).

    Article  Google Scholar 

  13. Watanabe T., “Convolution equivalence and distributions of random sums,” Probab. Theory Relat. Fields, vol. 142, no. 3, 367–397 (2008).

    Article  MathSciNet  Google Scholar 

  14. Xu H., Foss S., and Wang Y., “Convolution and convolution-root properties of long-tailed distributions,” Extremes, vol. 18, no. 4, 605–628 (2015).

    Article  MathSciNet  Google Scholar 

  15. Xu H., Wang Y., Cheng D., and Yu C., “On the closure under infinitely divisible distribution roots,” Lithuanian Math. J. (in press).

  16. Foss S. and Korshunov D., “Lower limits and equivalences for convolution tails,” Ann. Probab., vol. 1, no. 1, 366–383 (2007).

    MathSciNet  MATH  Google Scholar 

  17. Leslie J., “On the non-closure under convolution of the subexponential family,” J. Appl. Probab., vol. 26, no. 1, 58–66 (1989).

    Article  MathSciNet  Google Scholar 

  18. Klüppelberg C. and Villasenor J. A., “The full solution of the convolution closure problem for convolution-equivalent distributions,” J. Math. Anal. Appl., vol. 160, no. 1, 79–92 (1991).

    Article  MathSciNet  Google Scholar 

  19. Lin J. and Wang Y., “New examples of heavy-tailed \( O \)-subexponential distributions and related closure properties,” Stat. Probab. Lett., vol. 82, no. 3, 427–432 (2012).

    Article  MathSciNet  Google Scholar 

  20. Wang Y., Xu H., Cheng D., and Yu C., “The local asymptotic estimation for the supremum of a random walk with generalized strong subexponential summands,” Statist. Papers, vol. 59, no. 1, 99–126 (2018).

    Article  MathSciNet  Google Scholar 

  21. Watanabe T. and Yamamuro K., “Ratio of the tail of an infinitely divisible distribution on the line to that of its Lévy measure,” Electron. J. Probab., vol. 15, 44–74 (2010).

    MathSciNet  MATH  Google Scholar 

  22. Yu C. and Wang Y., “Tail behaviour of the supremum of a random walk when Cramér’s condition fails,” Front. Math. China, vol. 9, no. 2, 431–453 (2014).

    Article  MathSciNet  Google Scholar 

  23. Beck S., Blath J., and Scheutzow M., “A new class of large claims size distributions: Definition, properties, and ruin theory,” Bernoulli, vol. 21, no. 4, 2457–2483 (2016).

    MathSciNet  MATH  Google Scholar 

  24. Xu H., Scheutzow M., and Wang Y., “On a transformation between distributions obeying the principle of a single big jump,” J. Math. Anal. Appl., vol. 430, no. 2, 672–684 (2015).

    Article  MathSciNet  Google Scholar 

  25. Xu H., Scheutzow M., Wang Y., and Cui Z., “On the structure of a class of distributions obeying the principle of a single big jump,” Probab. Math. Stat., vol. 36, no. 1, 121–135 (2016).

    MathSciNet  MATH  Google Scholar 

  26. Embrechts P., Klüppelberg C., and Mikosch T., Modelling Extremal Events for Insurance and Finance, Springer, Berlin and Heidelberg (1997).

    Book  Google Scholar 

  27. Borovkov A. A. and Borovkov K. A., Asymptotic Analysis of Random Walks, Cambridge University, Cambridge (2008).

    Book  Google Scholar 

  28. Foss S., Korshunov D., and Zachary S., An Introduction to Heavy-Tailed and Subexponential Distributions, Springer, New York (2013).

    Book  Google Scholar 

  29. Embrechts P. and Goldie C. M., “On closure and factorization properties of subexponential and related distributions,” J. Aust. Math. Soc., vol. 29, 243–256 (1980).

    MathSciNet  MATH  Google Scholar 

  30. Embrechts P. and Goldie C. M., “On convolution tails,” Stochastic Processes. Appl., vol. 13, no. 3, 263–278 (1982).

    Article  MathSciNet  Google Scholar 

  31. Watanabe T., “The Wiener condition and the conjectures of Embrechts and Goldie,” Ann. Probab., vol. 47, no. 3, 1221–1239 (2019).

    Article  MathSciNet  Google Scholar 

  32. Watanabe T. and Yamamuro K., “Two non-closure properties on the class of subexponential densities,” J. Theor. Probab., vol. 30, no. 3, 1059–1075 (2017).

    Article  MathSciNet  Google Scholar 

  33. Yu C., Wang Y., and Yang Y., “The closure of the convolution equivalent distribution class under convolution roots with applications to random sums,” Statist. Probab. Lett., vol. 80, no. 5, 462–472 (2010).

    Article  MathSciNet  Google Scholar 

Download references

Funding

Y. Wang’s research was supported by the National Natural Science Foundation of China (no. 11071182).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Wang.

Additional information

Translated from Sibirskii Matematicheskii Zhurnal, 2022, Vol. 63, No. 1, pp. 216–231. https://doi.org/10.33048/smzh.2022.63.116

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, Z., Wang, Y. & Xu, H. Some Positive Conclusions Related to the Embrechts–Goldie Conjecture. Sib Math J 63, 179–192 (2022). https://doi.org/10.1134/S0037446622010165

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0037446622010165

Keywords

UDC

Navigation