Skip to main content
Log in

On Categoricity Spectra for Locally Finite Graphs

  • Published:
Siberian Mathematical Journal Aims and scope Submit manuscript

Abstract

Under study is the algorithmic complexity of isomorphisms between computable copies of locally finite graphs \( G \) (undirected graphs whose every vertex has finite degree). We obtain the following results: If \( G \) has only finitely many components then \( G \) is \( {\mathbf{d}} \)-computably categorical for every Turing degree \( {\mathbf{d}} \) from the class \( PA({\mathbf{0}}^{\prime}) \). If \( G \) has infinitely many components then \( G \) is \( {\mathbf{0}}^{\prime\prime} \)-computably categorical. We exhibit a series of examples showing that the obtained bounds are sharp.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Maltsev A. I., “On recursive abelian groups,” Soviet Math., Dokl., vol. 32, 1431–1434 (1962).

    Google Scholar 

  2. Fokina E. B., Kalimullin I., and Miller R., “Degrees of categoricity of computable structures,” Arch. Math. Logic, vol. 49, no. 1, 51–67 (2010).

    Article  MathSciNet  Google Scholar 

  3. Goncharov S. S., “Degrees of autostability relative to strong constructivizations,” Proc. Steklov Inst. Math., vol. 274, 105–115 (2011).

    Article  MathSciNet  Google Scholar 

  4. Csima B. F., Franklin J. N. Y., and Shore R. A., “Degrees of categoricity and the hyperarithmetic hierarchy,” Notre Dame J. Formal Logic, vol. 54, no. 2, 215–231 (2013).

    MathSciNet  MATH  Google Scholar 

  5. Csima B. F., Deveau M., Harrison-Trainor M., and Mahmoud M. A., “Degrees of categoricity above limit ordinals,” Computability, vol. 9, no. 2, 127–137 (2020).

    Article  MathSciNet  Google Scholar 

  6. Miller R., “\( {\mathbf{d}} \)-Computable categoricity for algebraic fields,” J. Symb. Log., vol. 74, no. 4, 1325–1351 (2009).

    Article  MathSciNet  Google Scholar 

  7. Bazhenov N. A., “Categoricity spectra of computable structures,” J. Math. Sci., vol. 256, no. 1, 34–50 (2021).

    MATH  Google Scholar 

  8. Csima B. F., Khoussainov B., and Liu J., “Computable categoricity of graphs with finite components,” in: Logic and Theory of Algorithms: 4th Conf. Computability in Europe, CiE 2008, Springer, Berlin (2008), 139–148.

  9. Bazhenov N. A., Fokina E. B., Rossegger D., and San Mauro L., “Computable bi-embeddable categoricity,” Algebra Logic, vol. 57, no. 5, 392–396 (2018).

    Article  MathSciNet  Google Scholar 

  10. Bazhenov N., Fokina E., Rossegger D., and San Mauro L., “Degrees of bi-embeddable categoricity,” Computability, vol. 10, no. 1, 1–16 (2021).

    Article  MathSciNet  Google Scholar 

  11. Marchuk M. I., “Index set of structures with two equivalence relations that are autostable relative to strong constructivizations,” Algebra Logic, vol. 55, no. 4, 306–314 (2016).

    Article  MathSciNet  Google Scholar 

  12. Goncharov S. S. and Ershov Yu. L., Constructive Models, Kluwer Academic/Plenum, New York, etc. (2000).

    MATH  Google Scholar 

  13. Ash C. J. and Knight J. F., Computable Structures and the Hyperarithmetical Hierarchy, Elsevier, Amsterdam (2000).

    MATH  Google Scholar 

  14. Scott D., “Algebras of sets binumerable in complete extensions of arithmetic,” in: Proc. Sympos. Pure Mathematics, vol. 5, Amer. Math. Soc., Providence (1962), 117–121.

  15. Jockusch C. G. and Soare R. I., “\( \Pi^{0}_{1} \)-Classes and degrees of theories,” Trans. Amer. Math. Soc., vol. 173, 33–56 (1972).

    MathSciNet  MATH  Google Scholar 

  16. Odifreddi P., Classical Recursion Theory, Elsevier, Amsterdam (1992).

    MATH  Google Scholar 

  17. Simpson S. G., “Degrees of unsolvability: A survey of results,” in: Handbook of Mathematical Logic, Elsevier, Amsterdam (1977), 631–652.

  18. Bazhenov N. A., Kalimullin I. Sh., and Yamaleev M. M., “Degrees of categoricity and spectral dimension,” J. Symb. Log., vol. 83, no. 1, 103–116 (2018).

    Article  MathSciNet  Google Scholar 

  19. Steiner R. M., “Effective algebraicity,” Arch. Math. Logic, vol. 52, no. 1, 91–112 (2013).

    Article  MathSciNet  Google Scholar 

  20. Bazhenov N. A. and Marchuk M. I., “Degrees of autostability relative to strong constructivizations of graphs,” Sib. Math. J., vol. 59, no. 4, 566–577 (2018).

    MathSciNet  MATH  Google Scholar 

  21. Ash C. J., “Recursive labelling systems and stability of recursive structures in hyperarithmetical degrees,” Trans. Amer. Math. Soc., vol. 298, no. 2, 497–514 (1986).

    Article  MathSciNet  Google Scholar 

Download references

Funding

The authors were supported by the Russian Foundation for Basic Research (Grant 20–31–70006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Bazhenov.

Additional information

Translated from Sibirskii Matematicheskii Zhurnal, 2021, Vol. 62, No. 5, pp. 983–994. https://doi.org/10.33048/smzh.2021.62.503

To Sergey Savost’yanovich Goncharov on the occasion of his 70th birthday.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bazhenov, N.A., Marchuk, M.I. On Categoricity Spectra for Locally Finite Graphs. Sib Math J 62, 796–804 (2021). https://doi.org/10.1134/S0037446621050037

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0037446621050037

Keywords

UDC

Navigation