Skip to main content
Log in

Locally Finite Periodic Groups Saturated with Finite Simple Orthogonal Groups of Odd Dimension

Siberian Mathematical Journal Aims and scope Submit manuscript

Abstract

Suppose that \( n \) is an odd integer, \( n\geq 5 \). We prove that a periodic group \( G \), saturated with finite simple orthogonal groups \( O_{n}(q) \) of odd dimension over fields of odd characteristic, is isomorphic to \( O_{n}(F) \) for some locally finite field \( F \) of odd characteristic. In particular, \( G \) is locally finite and countable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Canada)

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Lytkina D. V. and Mazurov V. D., “On characterization of simple orthogonal groups of odd dimension in the class of periodic groups,” Sib. Math. J., vol. 62, no. 1, 77–83 (2021).

    Article  Google Scholar 

  2. Taylor D. E., The Geometry of the Classical Groups, Heldermann, Berlin (1992).

    MATH  Google Scholar 

  3. Bray J. N., Holt D. F., and Roney-Dougal C. M., The Maximal Subgroups of the Low-Dimensional Finite Classical Groups, Cambridge Univ., Cambridge (2013) (Lond. Math. Soc. Lect. Note Ser.).

    Book  Google Scholar 

  4. Kleidman P. B. and Liebeck M., The Subgroup Structure of the Finite Classical Groups, Cambridge Univ., Cambridge (1990) (Lond. Math. Soc. Lect. Note Ser.; Vol. 129).

    Book  Google Scholar 

  5. Lytkina D. V. and Mazurov V. D., “Characterization of simple symplectic groups of degree \( 4 \) over locally finite fields in the class of periodic groups,” Algebra Logic, vol. 57, no. 3, 201–210 (2018).

    Article  MathSciNet  Google Scholar 

  6. Shunkov V. P., “A periodic group with almost regular involutions,” Algebra Logic, vol. 7, no. 1, 66–69 (1968).

    Article  MathSciNet  Google Scholar 

  7. Borovik A. V., “Embeddings of finite Chevalley groups and periodic linear groups,” Sib. Math. J., vol. 24, no. 6, 843–851 (1983).

    Article  Google Scholar 

  8. Belyaev V. V., “Locally finite Chevalley groups” in:, Studies in Group Theory, Ural Scientific Center, Sverdlovsk (1984), 39–50 [Russian].

  9. Hartley B. and Shute G., “Monomorphisms and direct limits of finite groups of Lie type,” Q. J. Math. Oxford, Ser. 2, vol. 35, no. 137, 49–71 (1984).

    Article  MathSciNet  Google Scholar 

  10. Thomas S., “The classification of the simple periodic linear groups,” Arch. Math., vol. 41, 103–116 (1983).

    Article  MathSciNet  Google Scholar 

  11. Larsen M. J. and Pink R., “Finite subgroups of algebraic groups,” J. Amer. Math. Soc., vol. 24, no. 4, 1105–1158 (2011).

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors express gratitude to Alexandre Zalesski for a consultation on the maximal elementary abelian 2-subgroups in orthogonal groups and to Danila Olegovich Revin for providing helpful comments.

Funding

The work of D. V. Lytkina was supported by the Mathematical Center in Akademgorodok under Agreement No. 075–15–2019–1613 with the Ministry of Science and Higher Education of the Russian Federation; the work of V. D. Mazurov was supported by the Russian Science Foundation (Project 19–11–00039).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Lytkina.

Additional information

Translated from Sibirskii Matematicheskii Zhurnal, 2021, Vol. 62, No. 3, pp. 576–582. https://doi.org/10.33048/smzh.2021.62.309

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lytkina, D.V., Mazurov, V.D. Locally Finite Periodic Groups Saturated with Finite Simple Orthogonal Groups of Odd Dimension. Sib Math J 62, 462–467 (2021). https://doi.org/10.1134/S0037446621030095

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0037446621030095

Keywords

UDC

Navigation