Skip to main content
Log in

Heights of Minor Faces in 3-Polytopes

  • Published:
Siberian Mathematical Journal Aims and scope Submit manuscript

Abstract

Each 3-polytope has obviously a face \( f \) of degree \( d(f) \) at most 5 which is called minor. The height \( h(f) \) of \( f \) is the maximum degree of the vertices incident with \( f \). A type of a face \( f \) is defined by a set of upper constraints on the degrees of vertices incident with \( f \). This follows from the double \( n \)-pyramid and semiregular \( (3,3,3,n) \)-polytope, \( h(f) \) can be arbitrarily large for each \( f \) if a 3-polytope is allowed to have faces of types \( (4,4,\infty) \) or \( (3,3,3,\infty) \) which are called pyramidal. Denote the minimum height of minor faces in a given 3-polytope by \( h \). In 1996, Horňák and Jendrol’ proved that every 3-polytope without pyramidal faces satisfies \( h\leq 39 \) and constructed a 3-polytope with \( h=30 \). In 2018, we proved the sharp bound \( h\leq 30 \). In 1998, Borodin and Loparev proved that every 3-polytope with neither pyramidal faces nor \( (3,5,\infty) \)-faces has a face \( f \) such that \( h(f)\leq 20 \) if \( d(f)=3 \), or \( h(f)\leq 11 \) if \( d(f)=4 \), or \( h(f)\leq 5 \) if \( d(f)=5 \), where bounds 20 and 5 are best possible. We prove that every 3-polytope with neither pyramidal faces nor \( (3,5,\infty) \)-faces has \( f \) with \( h(f)\leq 20 \) if \( d(f)=3 \), or \( h(f)\leq 10 \) if \( d(f)=4 \), or \( h(f)\leq 5 \) if \( d(f)=5 \), where all bounds 20, 10, and 5 are best possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Steinitz E., “Polyeder und Raumeinteilungen,” Enzykl. Math. Wiss. (Geometrie), 3AB, vol. 12, 1–139 (1922).

    Google Scholar 

  2. Lebesgue H., “Quelques conséquences simples de la formule d’Euler,” J. Math. Pures Appl., vol. 19, 27–43 (1940).

    MathSciNet  MATH  Google Scholar 

  3. Borodin O.V., “Colorings of plane graphs: a survey,” Discrete Math., vol. 313, no. 4, 517–539 (2013).

    Article  MathSciNet  Google Scholar 

  4. Plummer M. D. and Toft B., “Cyclic coloration of 3-polytopes,” J. Graph Theory, vol. 11, no. 4, 507–515 (1987).

    Article  MathSciNet  Google Scholar 

  5. Ore O. and Plummer M. D., “Cyclic coloration of plane graphs,” in: Recent Progress in Combinatorics, Academic, New York (1969), 287–293.

  6. Borodin O. V., “An improvement of Lebesgue’s theorem on the structure of minor faces of 3-polytopes (Russian),” Diskretn. Anal. Issled. Oper., vol. 9, no. 3, 29–39 (2002).

    MathSciNet  Google Scholar 

  7. Borodin O. V. and Ivanova A. O., “Describing 3-faces in normal plane maps with minimum degree 4,” Discrete Math., vol. 313, no. 23, 2841–2847 (2013).

    Article  MathSciNet  Google Scholar 

  8. Borodin O. V., Ivanova A. O., and Kostochka A. V., “Describing faces in plane triangulations,” Discrete Math., vol. 319, 47–61 (2014).

    Article  MathSciNet  Google Scholar 

  9. Borodin O. V. and Ivanova A. O., “Describing faces in 3-polytopes with no vertices of degree from 5 to 7,” Discrete Math., vol. 342, no. 11, 3208–3215 (2019).

    Article  MathSciNet  Google Scholar 

  10. Kotzig A., “From the theory of Eulerian polyhedra,” Mat. Čas., vol. 13, 20–31 (1963).

    MathSciNet  MATH  Google Scholar 

  11. Borodin O. V., “Solution of Kotzig’s and Grübaum’s problems on the separability of a cycle in a planar graph,” Math. Notes, vol. 46, no. 5, 835–837 (1989).

    Article  MathSciNet  Google Scholar 

  12. Grünbaum B., “Polytopal graphs,” in: Studies in Graph Theory. Part II, Fulkerson D., Ed., MAA (1975), 201–224 (MAA Studies in Mathematics; Vol. 12).

  13. Plummer M. D., “On the cyclic connectivity of planar graphs,” in: Graph Theory and Applications. Alavi Y., Lick D. R,, and White A. T., Eds., Proceedings of the Conference at Western Michigan University, May 10–13, 1972, Springer, Berlin, Heidelberg, and New York (1972), 235–242 (Lecture Notes Math.; Vol. 303).

  14. Kotzig A., “Extremal polyhedral graphs,” Ann. New York Acad. Sci., vol. 319, 569–570 (1979).

    Google Scholar 

  15. Borodin O. V., “Minimal weight of a face in planar triangulations without 4-vertices,” Math. Notes, vol. 51, no. 1, 11–13 (1992).

    Article  MathSciNet  Google Scholar 

  16. Borodin O. V., “Triangulated 3-polytopes without faces of low weight,” Discrete Math., vol. 186, no. 1, 281–285 (1998).

    Article  MathSciNet  Google Scholar 

  17. Avgustinovich S. V. and Borodin O. V., “Neighborhoods of edges in normal maps (Russian),” Diskret. Anal. Issled. Oper., vol. 2, no. 3, 3–9 (1995).

    MathSciNet  MATH  Google Scholar 

  18. Borodin O. V. and Ivanova A. O., “Low edges in 3-polytopes,” Discrete Math., vol. 338, no. 12, 2234–2241 (2015).

    Article  MathSciNet  Google Scholar 

  19. Horňák M. and Jendrol’ S., “Unavoidable sets of face types for planar maps,” Discuss. Math. Graph Theory, vol. 16, no. 2, 123–142 (1996).

    Article  MathSciNet  Google Scholar 

  20. Borodin O. V. and Woodall D. R., “The weight of faces in plane maps,” Math. Notes, vol. 64, no. 5, 562–570 (1998).

    Article  MathSciNet  Google Scholar 

  21. Borodin O. V. and Ivanova A. O., “The height of faces of 3-polytopes,” Sib. Math. J., vol. 58, no. 1, 37–42 (2017).

    Article  MathSciNet  Google Scholar 

  22. Borodin O. V., Bykov M. A., and Ivanova A. O., “More about the height of faces in 3-polytopes,” Discuss. Mat. Graph Theory, vol. 38, no. 2, 443–453 (2018).

    Article  MathSciNet  Google Scholar 

  23. Borodin O. V. and Ivanova A. O., “Low minor faces in 3-polytopes,” Discrete Math., vol. 341, no. 12, 3415–3424 (2018).

    Article  MathSciNet  Google Scholar 

  24. Borodin O. V. and Loparev D. V., “The height of minor faces in normal plane maps,” Discrete Appl. Math., vol. 135, no. 1, 31–39 (2004).

    Article  MathSciNet  Google Scholar 

  25. Borodin O. V. and Ivanova A. O., “Heights of minor faces in triangle-free 3-polytopes,” Sib. Math. J., vol. 56, no. 5, 783–788 (2015).

    Article  MathSciNet  Google Scholar 

  26. Jendrol’ S. and Voss H.-J., “Light subgraphs of graphs embedded in the plane—a survey,” Discrete Math., vol. 313, no. 4, 406–421 (2013).

    Article  MathSciNet  Google Scholar 

  27. Borodin O. V. and Ivanova A. O., “New results about the structure of plane graphs: a survey,” AIP Conference Proceedings, vol. 1907, no. 1, 030051 (2017).

    Article  Google Scholar 

  28. Mohar B., Škrekovski R., and Voss H.-J., “Light subgraphs in planar graphs of minimum degree 4 and edge-degree 9,” J. Graph Theory, vol. 44, no. 4, 261–295 (2003).

    Article  MathSciNet  Google Scholar 

  29. Jendrol’ S., “Triangles with restricted degrees of their boundary vertices in plane triangulations,” Discrete Math., vol. 196, no. 1, 177–196 (1999).

    Article  MathSciNet  Google Scholar 

  30. Borodin O. V., “Joint generalization of the theorems of Lebesgue and Kotzig on the combinatorics of planar maps (Russian),” Diskret. Mat., vol. 3, no. 4, 24–27 (1991).

    MathSciNet  MATH  Google Scholar 

  31. Borodin O. V. and Ivanova A. O., “The height of edge in 3-polytope,” Sib. Elektron. Mat. Izv., vol. 11, 457–463 (2014).

    MathSciNet  MATH  Google Scholar 

  32. Borodin O. V. and Woodall D. R., “Cyclic degrees of 3-polytopes,” Graphs Combin., vol. 15, no. 3, 267–277 (1999).

    Article  MathSciNet  Google Scholar 

  33. Ferencová B. and Madaras T., “On the structure of polyhedral graphs with prescribed edge and dual edge weight,” Acta Univ. M. Belii Math., vol. 12, 13–18 (2005).

    MathSciNet  MATH  Google Scholar 

  34. Ferencová B. and Madaras T., “Light graphs in families of polyhedral graphs with prescribed minimum degree, face size, edge and dual edge weight,” Discrete Math., vol. 310, no. 12, 1661–1675 (2010).

    Article  MathSciNet  Google Scholar 

  35. Kotzig A., “Contribution to the theory of Eulerian polyhedra,” Mat.-Fyz. Casopis, vol. 5, 101–113 (1995).

    MathSciNet  Google Scholar 

  36. Madaras T. and Škrekovski R., “Heavy paths, light stars, and big melons,” Discrete Math., vol. 286, no. 1, 115–131 (2004).

    Article  MathSciNet  Google Scholar 

Download references

Funding

This work was funded by the Russian Science Foundation (Grant 16–11–10054).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Borodin.

Additional information

Translated from Sibirskii Matematicheskii Zhurnal, 2021, Vol. 62, No. 2, pp. 250–268. https://doi.org/10.33048/smzh.2021.62.202

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borodin, O.V., Ivanova, A.O. Heights of Minor Faces in 3-Polytopes. Sib Math J 62, 199–214 (2021). https://doi.org/10.1134/S0037446621020026

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0037446621020026

Keywords

UDC

Navigation