Skip to main content
Log in

The Junction Problem for Two Weakly Curved Inclusions in an Elastic Body

  • Published:
Siberian Mathematical Journal Aims and scope Submit manuscript

Abstract

Under study are the boundary value problems that describe the equilibria of two-dimensional elastic bodies with thin weakly curved inclusions in the presence of delamination, which means that there is a crack between the inclusions and an elastic body. Some inequality-type nonlinear boundary conditions are imposed on the crack faces that exclude mutual penetration. This puts the problems into the class of those with unknown contact area. We assume that the inclusions have a contact point, find boundary conditions at the junction point, and justify passage to infinity with respect to the rigidity parameter of the thin inclusion. In particular, we obtain and analyze limit models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Khludnev A. M.,Elasticity Problems in Nonsmooth Domains [Russian], Fizmatlit, Moscow (2010).

    Google Scholar 

  2. Khludnev A. M. and Kovtunenko V. A.,Analysis of Cracks in Solids, WIT Press, Southampton and Boston (2000).

    Google Scholar 

  3. Kovtunenko V. A. and Leugering G., “A shape-topological control problem for nonlinear crack-defect interaction: the anti-plane variational model,” SIAM J. Control Optim., vol. 54, no. 3, 1329–1351 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  4. Knees D. and Mielke A., “Energy release rate for cracks in finite-strain elasticity,” Math. Methods Appl. Sci., vol. 31, no. 5, 501–518 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  5. Knees D. and Schroder A., “Global spatial regularity for elasticity models with cracks, contact and other nonsmooth constraints,” Math. Methods Appl. Sci., vol. 35, no. 15, 1859–1884 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  6. Lazarev N. P. and Rudoy E. M., “Shape sensitivity analysis of Timoshenko’s plate with a crack under the nonpenetration condition,” Z. Angew. Math. Mech., vol. 94, no. 9, 730–739 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  7. Rudoy E. M., “Asymptotics of the energy functional for a fourth-order mixed boundary value problem in a domain with a cut,” Sib. Math. J., vol. 50, no. 2, 341–354 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  8. Khludnev A. M. and Leugering G. R., “On Timoshenko thin elastic inclusions inside elastic bodies,” Math. Mech. Solids, vol. 20, no. 5, 495–511 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  9. Rudoy E. M., “Asymptotic behavior of the energy functional for a three-dimensional body with a rigid inclusion and a crack,” J. Appl. Mech. Tech. Phys., vol. 52, no. 2, 252–263 (2011).

    Article  MathSciNet  Google Scholar 

  10. Rudoy E. M., “Shape derivative of the energy functional in a problem for a thin rigid inclusion in an elastic body,” Z. Angew. Math. Phys., vol. 66, no. 4, 1923–1937 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  11. Khludnev A. M., “A weakly curved inclusion in an elastic body with separation,” Mechanics of Solids, vol. 50, no. 5, 591–601 (2015).

    Article  Google Scholar 

  12. Shcherbakov V. V., “On an optimal control problem for the shape of thin inclusions in elastic bodies,” J. Appl. Ind. Math., vol. 7, no. 3, 435–443 (2013).

    Article  MathSciNet  Google Scholar 

  13. Shcherbakov V. V., “Choosing an optimal shape of thin rigid inclusions in elastic bodies,” J. Appl. Mech. Tech. Phys., vol. 56, no. 2, 321–329 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  14. Lazarev N. P., “Shape sensitivity analysis of the energy integrals for the Timoshenko-type plate containing a crack on the boundary of a rigid inclusion,” Z. Angew. Math. Phys., vol. 66, no. 4, 2025–2040 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  15. Le Dret H., “Modeling of the junction between two rods,” J. Math. Pures Appl., vol. 68, 365–397 (1989).

    MathSciNet  MATH  Google Scholar 

  16. Le Dret H., “Modeling of a folded plate,” Computational Mechanics, vol. 5, no. 6, 401–416 (1990).

    Article  MATH  Google Scholar 

  17. Ciarlet P. G., Le Dret H., and Nzengwa R., “Junctions between three dimensional and two dimensional linearly elastic structures,” J. Math. Pures Appl., vol. 68, no. 3, 261–295 (1989).

    MathSciNet  MATH  Google Scholar 

  18. Titeux I. and Sanchez-Palencia E., “Junction of thin plates,” Eur. J. Mech. A Solids, vol. 19, no. 3, 377–400 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  19. Gaudiello A. and Zappale E., “Junction in a thin multidomain for a fourth order problem,” Math. Models Methods Appl. Sci., vol. 16, no. 12, 1887–1918 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  20. Gaudiello A., Monneau R., Mossino J., Mura F., and Sili A., “Junction of elastic plates and beams,” ESAIM Control Optim. Calc. Var., vol. 13, no. 3, 419–457 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  21. Neustroeva N. V. and Lazarev N. P., “The junction problem for Euler–Bernoulli and Timoshenko elastic beams,” Sib. Èlektron. Mat. Izv., vol. 13, 26–37 (2016).

    MathSciNet  MATH  Google Scholar 

  22. Bogan Yu. A., “On the Samarskii–Andreev transmission conditions in the theory of elastic beams,” Math. Notes, vol. 92, no. 5, 606–611 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  23. Khludnev A. M., Faella L., and Popova T. S., “Junction problem for rigid and Timoshenko elastic inclusions in elastic bodies,” Math. Mech. Solids, vol. 22, no. 4, 737–750 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  24. Faella L. and Khludnev A. M., “Junction problem for elastic and rigid inclusions in elastic bodies,” Math. Methods Appl. Sci., vol. 39, no. 12, 3381–3390 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  25. Khludnev A. M. and Popova T. S., “Junction problem for rigid and semi-rigid inclusions in elastic bodies,” Arch. Appl. Mech., vol. 86, no. 9, 1565–1577 (2016).

    Article  Google Scholar 

  26. Khludnev A. M. and Popova T. S., “Junction problem for Euler–Bernoulli and Timoshenko elastic inclusions in elastic bodies,” Quart. Appl. Math., vol. 74, no. 4, 705–718 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  27. Khludnev A. M. and Popova T. S., “On the mechanical interplay between Timoshenko and semirigid inclusions embedded in elastic bodies,” Z. Angew. Math. Mech., vol. 97, no. 11, 1406–1417 (2017).

    MathSciNet  Google Scholar 

  28. Khludnev A. M. and Popova T. S., “Semirigid inclusions in elastic bodies: Mechanical interplay and optimal control,” Comput. Math. Appl., vol. 77, no. 1, 253–262 (2019).

    Article  MathSciNet  Google Scholar 

  29. Volmir A. S.,The Nonlinear Dynamics of Plates and Shells [Russian], Nauka, Moscow (1972).

    Google Scholar 

Download references

Funding

The work is supported by the Mathematical Center in Akademgorodok under Agreement no. 075–15–2019–1613 with the Ministry of Science and Higher Education of the Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Khludnev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khludnev, A.M., Popova, T.S. The Junction Problem for Two Weakly Curved Inclusions in an Elastic Body. Sib Math J 61, 743–754 (2020). https://doi.org/10.1134/S003744662004014X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S003744662004014X

Keywords

UDC

Navigation