Skip to main content
Log in

Absolute Convergence of the Double Fourier-Franklin Series

  • Published:
Siberian Mathematical Journal Aims and scope Submit manuscript

Abstract

We prove that, for every 0 < ϵ < 1, there exists a measurable set ET = [0, 1]2 with measure ∣E∣ > 1 − ϵ such that, for all fL1(T) and 0 < η < 1, we can find \(\tilde f \in {L^1}(T)\) with \(\int\!\!\!\int_T {{\rm{|}}f(x,y) - \tilde f(x,y){\rm{|}}dxdy \le \eta } \) coinciding with f(x, y) on E whose double Fourier-Franklin series converges absolutely to f almost everywhere on T.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Louzine N. N., “Sur un cas particulier de la série de Taylor,” Mat. Sb., vol. 28, no. 2, 266–294 (1912).

    Google Scholar 

  2. Menchoff D., “Sur la convergence uniforme des séries de Fourier,” Mat. Sb., vol. 53, no. 2, 67–96 (1942).

    MathSciNet  Google Scholar 

  3. Franklin Ph., “A set of continuous orthogonal functions,” Math. Ann., vol. 100, 522–528 (1928).

    Article  MathSciNet  Google Scholar 

  4. Arutyunyan F. G., “On series in the Haar system,” Dokl. Akad. Nauk Armenii Ser. Mat., vol. 42, 134–140 (1966).

    MATH  Google Scholar 

  5. Gevorkyan G. G., “On the representation of measurable functions by absolute convergent series in Franklin’s system,” Dokl. Akad. Nauk Armenii Ser. Mat., vol. 83, no. 1, 15–18 (1986).

    MATH  Google Scholar 

  6. Katznelson Y., “On a theorem of Menshoff,” Proc. Amer. Math. Soc., vol. 53, 396–398 (1975).

    Article  MathSciNet  Google Scholar 

  7. Grigoryan M. G., “The unconditional convergence of Fourier-Haar series,” Bull. TICMI, vol. 18, no. 1, 130–140 (2014).

    MathSciNet  MATH  Google Scholar 

  8. Galoyan L. N., Grigorian M. G., and Kobelyan A. Kh., “Convergence of Fourier series in classical systems,” Sb. Math., vol. 206, no. 7, 941–979 (2015).

    Article  MathSciNet  Google Scholar 

  9. Grigoryan M. G. and Grigoryan T. M., “On the absolute convergence of Schauder series,” Adv. Theoret. Appl. Math., vol. 9, no. 1, 11–14 (2014).

    MATH  Google Scholar 

  10. Oniani G. G., “On the divergence of multiple Fourier-Haar series,” Anal. Math., vol. 38, 227–247 (2012).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to G. G. Gevorkyan or M. G. Grigoryan.

Additional information

Russian Text © The Author(s), 2020, published in Sibirskii Matematicheskii Zhurnal, 2020, Vol. 61, No. 3, pp. 513–527.

The authors were supported by the Science Committee of Ministry of Education and Science of the Republic of Armenia (Grants 18-1A074 and 18-1A148).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gevorkyan, G.G., Grigoryan, M.G. Absolute Convergence of the Double Fourier-Franklin Series. Sib Math J 61, 403–416 (2020). https://doi.org/10.1134/S0037446620030039

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0037446620030039

Keywords

Navigation