Skip to main content
Log in

Lorentzian Manifolds Close to Euclidean Space

  • Published:
Siberian Mathematical Journal Aims and scope Submit manuscript

Abstract

We study the Lorentzian manifolds M1, M2, M3, and M4 obtained by small changes of the standard Euclidean metric on ℝ4 with the punctured origin O. The spaces M1 and M4 are closed isotropic space-time models. The manifolds M3 and M4 (respectively, M1 and M2) are geodesically (non)complete; M1 are M4 are globally hyperbolic, while M2 and M3 are not chronological. We found the Lie algebras of isometry and homothety groups for all manifolds; the curvature, Ricci, Einstein, Weyl, and energy-momentum tensors. It is proved that M1 and M4 are conformally flat, while M2 and M3 are not conformally flat and their Weyl tensor has the first Petrov type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beem J. K. and Ehrlich P. E., Global Lorentzian Geometry, Marcel Dekker Inc., New York (1981).

    MATH  Google Scholar 

  2. Beem J. K, Ehrlich P. E., and Easley K. L., Global Lorentzian Geometry. 2nd ed., Marcel Dekker Inc., New York (1996).

    MATH  Google Scholar 

  3. Hawking St., A Brief History of Time. 10th ed., Bantam Books Inc., New York (1998).

    MATH  Google Scholar 

  4. Landau L. D. and Lifshitz E. M., The Classical Theory of Fields. 3d revised English ed., Pergamon Press Ltd., Oxford (1971).

    MATH  Google Scholar 

  5. Hawking S. W. and Ellis G. F. R., The Large Scale Structure of Space-Time, Cambridge University Press, Cambridge (1973).

    Book  MATH  Google Scholar 

  6. Misner C. W, Thorne K. S., and Wheeler J. A., Gravitation. Vols. 1–3, W. H. Freeman and Company, San Francisco (1973).

    Google Scholar 

  7. Petrov A. Z, New Methods in General Relativity Theory [Russian], Nauka, Moscow (1966).

    Google Scholar 

  8. Rashevsky P. C, Riemannian Geometry and Tensor Analysis [Russian], Nauka, Moscow (1964).

    MATH  Google Scholar 

  9. Trautman A., “Killing equations and conservation laws,” Bull. Polsk. AN, vol. III, 4, no. 10, 671–674 (1954).

    Google Scholar 

  10. Calvaruso G. and Zaeim A., “Four-dimensional homogeneous Lorentzian manifolds,” Monatsch. Math., vol. 174, no. 3, 377–402 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  11. Calvaruso G. and Zaeim A., “Conformally flat pseudo-Riemannian four-manifolds,” Tohoku Math. J. (2), vol. 66, no. 1, 31–54 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  12. Chen Bang-Yen, “A simple characterization of generalized Robertson-Walker spacetimes,” Gen. Relativity Gravitation, vol. 46, no. 12. Art. 1833, 5 pp. (2014).

    Google Scholar 

  13. Gromoll D., Klingenberg W., and Meyer W., Riemannsche Geometrie im Grossen, Springer-Verlag, Berlin (1968).

    Book  MATH  Google Scholar 

  14. Berestovskii V. N. and Nikonorov Yu. G., Riemannian Manifolds and Homogeneous Geodesics [Russian], UMI VNZ RAN, Vladikavkaz (2012).

    Google Scholar 

  15. Berestovskii V. N. and Zubareva I. A., “Correct observer’s event horizon for de Sitter space-time,” Sib. Electron. Math. Reports, vol. 12, 101–107 (2015).

    MathSciNet  MATH  Google Scholar 

  16. Besse A. L, Einstein Manifolds, Springer-Verlag, Berlin, Heidelberg, New York (1987).

    Book  MATH  Google Scholar 

  17. Batista C., “On the Weyl tensor classification in all dimensions and its relation with integrability properties,” J. Math. Phys., vol. 54, no. 042502, (2013).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Berestovskii.

Additional information

The author was supported by the Ministry of Education and Science of the Russian Federation (Grant 1.3087.2017/4.6).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berestovskii, V.N. Lorentzian Manifolds Close to Euclidean Space. Sib Math J 60, 235–248 (2019). https://doi.org/10.1134/S0037446619020058

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0037446619020058

Keywords

Navigation