Skip to main content

On Solvability of an Initial-Boundary Value Problem for a Viscoelasticity Model with Fractional Derivatives


We establish the existence and uniqueness (the latter only in the plane case) of a weak solution to an initial-boundary value problem for the system of the equations of motion of a viscoelastic fluid, namely, for the anti-Zener model whose constitutive law contains fractional derivatives. We use the approximation of this problem by a sequence of regularized Navier–Stokes systems and passage to the limit.

This is a preview of subscription content, access via your institution.


  1. Gyarmati I., Non-Equilibrium Thermodynamics: Field Theory and Variational Principles, Springer-Verlag, Berlin and Heidelberg (1970).

    Book  Google Scholar 

  2. Mainardi F. and Spada G., “Creep, relaxation and viscosity properties for basic fractional models in rheology,” Eur. Phys. J. Special Topics, vol. 193, No. 1, 133–160 (2011).

    Article  Google Scholar 

  3. Ogorodnikov E. N., Radchenko V. P., and Yashagin N. S., “Rheological model of viscoelastic body with memory and differential equations of fractional oscillators,” Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, vol. 22, No. 1, 255–268 (2011).

    Article  Google Scholar 

  4. Zvyagin V. G., “On solvability of some initial-boundary problems for mathematical models of the motion of nonlinearly viscous and viscoelastic fluids,” J. Math. Sci., vol. 124, No. 5, 5321–5334 (2004).

    MathSciNet  Article  MATH  Google Scholar 

  5. Zvyagin V. G. and Turbin M. V., Mathematical Problems for Hydrodynamic Viscoelastic Media [Russian], Krassand (URSS), Moscow (2012).

    Google Scholar 

  6. Orlov V. P., Rode D. A., and Pliev M. A., “Weak solvability of the generalized Voigt viscoelasticity model,” Sib. Math. J., vol. 58, No. 5, 859–874 (2017).

    MathSciNet  Article  MATH  Google Scholar 

  7. Zvyagin V. G. and Orlov V. P., “Weak solvability of a fractional Voigt viscoelasticity model,” Dokl. Math., vol. 96, No. 2, 491–493 (2017).

    MathSciNet  Article  MATH  Google Scholar 

  8. Temam R., Navier–Stokes Equations. Theory and Numerical Analysis, Amer. Math. Soc., Providence (2001).

    Google Scholar 

  9. Samko S. G., Kilbas A. A., and Marichev O. M., Integrals and Fractional-Order Derivatives and Some of Their Applications, Gordon and Breach, Amsterdam (1993).

    MATH  Google Scholar 

  10. Krasnoselskii M. A., Zabreiko P. P., Pustylnik E. I., and Sobolevskii P. E., Integral Operators in Spaces of Summable Functions, Noordhoff Int. Publ., Leyden (1976).

    Book  Google Scholar 

  11. Ashyralyev A., “A note on fractional derivatives and fractional powers of operators,” J. Math. Anal. Appl., vol. 357, 232–236 (2009).

    MathSciNet  Article  MATH  Google Scholar 

  12. Zvyagin V. G. and Dmitrienko V. T., “On weak solutions of a regularized model of a viscoelastic fluid,” Differ. Equ., vol. 38, No. 12, 1731–1744 (2002).

    MathSciNet  Article  MATH  Google Scholar 

  13. Zvyagin V. G. and Dmitrienko V. T., Topological Approximation Approach to the Study of the Problems of Hydrodynamics. A Navier–Stokes System [Russian], Èditorial URSS, Moscow (2004).

    Google Scholar 

  14. Orlov V. P. and Sobolevskii P. E., “On mathematical models of a viscoelasticity with a memory,” Differ. Integral Equ., vol. 4, No. 1, 103–115 (1991).

    MathSciNet  MATH  Google Scholar 

  15. Yosida K., Functional Analysis, Springer-Verlag, Berlin (1994).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to V. G. Zvyagin.

Additional information

Original Russian Text © 2018 Zvyagin V.G. and Orlov V.P.


Voronezh. Translated from Sibirskii Matematicheskii Zhurnal, vol. 59, no. 6, pp. 1351–1369, November–December, 2018; DOI: 10.17377/smzh.2018.59.610.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zvyagin, V.G., Orlov, V.P. On Solvability of an Initial-Boundary Value Problem for a Viscoelasticity Model with Fractional Derivatives. Sib Math J 59, 1073–1089 (2018).

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI:


  • viscoelastic medium
  • equation of motion
  • initial-boundary value problem
  • weak solution
  • anti-Zener model
  • fractional derivative