Advertisement

Siberian Mathematical Journal

, Volume 59, Issue 1, pp 107–112 | Cite as

On the Number of Vedernikov–Ein Irreducible Components of the Moduli Space of Stable Rank 2 Bundles on the Projective Space

  • N. N. OsipovEmail author
  • S. A. Tikhomirov
Article
  • 24 Downloads

Abstract

We propose a method for finding the exact number of Vedernikov–Ein irreducible components of the first and second types in the moduli space M(0, n) of stable rank 2 bundles on the projective space P3 with Chern classes c1 = 0 and c2 = n ≥ 1. We give formulas for the number of Vedernikov–Ein components and find a criterion for their existence for arbitrary n ≥ 1.

Keywords

stable bundle Chern classes moduli space Pell equations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Choi J., Chung K., and Maican M., “Moduli of sheaves supported on quartic space curves,” Michigan Math. J., vol. 65, no. 3, 637–671 (2016).MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Hauzer M. and Langer A., “Moduli spaces of framed perverse instanton sheaves on P3,” Glasg. Math. J., vol. 53, 51–96 (2011).MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Jardim M., Markushevich D., and Tikhomirov A. S., “Two infinite series of moduli spaces of rank 2 sheaves on P3,” Ann. Mat. Pura Appl., vol. 196, 1573–1608 (2017).MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Tikhomirov A. S., “Moduli of mathematical instanton vector bundles with odd c 2 on projective space,” Izv. Math., vol. 76, no. 5, 991–1073 (2012).MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Tikhomirov A. S., “Moduli of mathematical instanton vector bundles with even c 2 on projective space,” Izv. Math., vol. 77, no. 6, 1195–1223 (2013).MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Kytmanov A. A., Osipov N. N., and Tikhomirov A. S., “Finding Ein components in the moduli spaces of stable rank 2 bundles on the projective 3-space,” Sib. Math. J., vol. 57, no. 2, 322–329 (2016).MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Ein L., “Generalized null correlation bundles,” Nagoya Math. J., vol. 111, 13–24 (1988).MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Vedernikov V. K., “Moduli of stable vector bundles of rank 2 on P3 with fixed spectrum,” Math. USSR-Izv., vol. 25, no. 2, 301–313 (1985).CrossRefzbMATHGoogle Scholar
  9. 9.
    Barbeau E. J., Pell’s Equation, Springer-Verlag, New York (2003).CrossRefzbMATHGoogle Scholar
  10. 10.
    Borevich Z. I. and Shafarevich I. R., Number Theory, Academic Press, New York (1966).zbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Siberian Federal UniversityKrasnoyarskRussia
  2. 2.Yaroslavl’State Pedagogical UniversityYaroslavl’Russia
  3. 3.Russia Koryazhma Branch of Northern (Arctic) Federal UniversityKoryazhmaRussia

Personalised recommendations