Skip to main content

Parabolic spline interpolation for functions with large gradient in the boundary layer

Abstract

We consider the problem of Subbotin’s parabolic spline interpolation for functions with large gradient domains. In the case of the common piecewise uniform Shishkin’s mesh we obtain two-sided accuracy estimates for the class of functions with exponential boundary layer. The spline interpolation accuracy estimates are not uniform in a small parameter, while the error itself can grow unboundedly as the small parameter vanishes and the number N of nodes remains fixed. We include the results of some simulations.

This is a preview of subscription content, access via your institution.

References

  1. Ahlberg J. H., Nilson E. N., and Walsh J. L., The Theory of Splines and Their Applications, Academic Press, New York (1967).

    MATH  Google Scholar 

  2. Stechkin S. B. and Subbotin Yu. N., Splines in Computational Mathematics [Russian], Nauka, Moscow (1976).

    MATH  Google Scholar 

  3. Boor C. de, A Practical Guide to Splines, Springer-Verlag, New York (1978).

    Book  MATH  Google Scholar 

  4. Zav'yalov Yu. S., Kvasov B. I., and Miroshnichenko V. L., Methods of Spline Functions [Russian], Nauka, Moscow (1980).

    MATH  Google Scholar 

  5. Bakhvalov N. S., “The optimization of methods of solving boundary value problems with a boundary layer,” USSR Comput. Math. Math. Phys., vol. 9, no. 4, 139–166 (1969).

    MathSciNet  Article  MATH  Google Scholar 

  6. Shishkin G. I., Grid Approximation of Singularly Perturbed Elliptic and Parabolic Equations [Russian], UrO RAN, Ekaterinburg (1992).

    Google Scholar 

  7. Zadorin A. I., “The interpolation method for a boundary layer problem,” Sib. Zh. Vychisl. Mat., vol. 10, no. 3, 267–275 (2007).

    MathSciNet  MATH  Google Scholar 

  8. Zadorin A. I., “Lagrange interpolation and Newton–Cotes formulas for functions with boundary layer components on piecewise-uniform grids,” Numer. Anal. Appl., vol. 8, no. 3, 235–247 (2015).

    MathSciNet  Article  MATH  Google Scholar 

  9. Zadorin A. I., “Spline interpolation of functions with a boundary layer component,” Intern. J. Numer. Anal. Model. Ser. B, vol. 2, no. 2–3, 262–279 (2011).

    MathSciNet  MATH  Google Scholar 

  10. Volkov Yu. S., “Interpolation by splines of even degree according to Subbotin and Marsden,” Ukrainian Math. J., vol. 66, no. 7, 994–1012 (2014).

    MathSciNet  Article  MATH  Google Scholar 

  11. Zmatrakov N. L., “Convergence of an interpolation process for parabolic and cubic splines,” Proc. Steklov Inst. Math., vol. 138, 75–99 (1977).

    MathSciNet  MATH  Google Scholar 

  12. Zmatrakov N. L., “A necessary condition for convergence of interpolating parabolic and cubic splines,” Math. Notes, vol. 19, no. 2, 100–107 (1976).

    MathSciNet  Article  MATH  Google Scholar 

  13. Linss T., “The necessity of Shishkin decompositions,” Appl. Math. Let., vol. 14, no. 7, 891–896 (2001).

    MathSciNet  Article  MATH  Google Scholar 

  14. Miller J. J. H., O’Riordan E., and Shishkin G. I., Fitted Numerical Methods for Singular Perturbation Problems: Error Estimates in the Maximum Norm for Linear Problems in One and Two Dimensions (revised ed.), World Sci., Singapore (2012).

    Book  MATH  Google Scholar 

  15. Demko S., “Inverses of band matrices and local convergence of spline projections,” SIAM J. Numer. Anal., vol. 14, no. 4, 616–619 (1977).

    MathSciNet  Article  MATH  Google Scholar 

  16. Voevodin V. V. and Kuznetsov Yu. A., Matrices and Calculations [Russian], Nauka, Moscow (1984).

    MATH  Google Scholar 

  17. Samarskiĭ A. A. and Nikolaev E. S., Methods for Solving Grid Equations [Russian], Nauka, Moscow (1978).

    Google Scholar 

  18. Blatov I. A., “Incomplete factorization methods for systems with sparse matrices,” Comput. Math. Math. Phys., vol. 33, no. 6, 727–741 (1993).

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Blatov.

Additional information

Samara; Omsk. Translated from Sibirskiĭ Matematicheskiĭ Zhurnal, Vol. 58, No. 4, pp. 745–760, July–August, 2017

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Blatov, I.A., Zadorin, A.I. & Kitaeva, E.V. Parabolic spline interpolation for functions with large gradient in the boundary layer. Sib Math J 58, 578–590 (2017). https://doi.org/10.1134/S0037446617040036

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0037446617040036

Keywords

  • boundary layer
  • large gradient
  • parabolic spline
  • Shishkin mesh
  • interpolation accuracy