Skip to main content
Log in

The tabularity problem over the minimal logic

  • Published:
Siberian Mathematical Journal Aims and scope Submit manuscript

Abstract

We prove that the problem of tabularity over Johansson’s minimal logic J is decidable. Describing all pretabular extensions of the minimal logic, we find that there are seven of them and show that they are all recognizable over J. We find axiomatizations and semantic characterizations of all seven pretabular logics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Johansson I., “Der Minimalkalkül, ein reduzierter intuitionistischer Formalismus,” Compos. Math., 4, 119–136 (1937).

    MATH  Google Scholar 

  2. Maksimova L. L., “Pretabular superintuitionist logic,” Algebra and Logic, 11, No. 5, 308–314 (1972).

    Article  MathSciNet  MATH  Google Scholar 

  3. Kuznetsov A. V., “Some properties of the structure of varieties of pseudo-Boolean algebras,” in: XI All-Union Algebraic Colloquium [Russian], Kishinev, 1971, 255–256.

    Google Scholar 

  4. Verkhozina M. I., “Intermediate positive logics,” in: Algorithmic Problems of Algebraic Systems [Russian], Irkutsk Univ., Irkutsk, 1978, pp. 13–25.

    Google Scholar 

  5. Blok W. J., “Pretabular varieties of modal algebras,” Stud. Log., 39, No. 2–3, 101–124 (1980).

    Article  MathSciNet  MATH  Google Scholar 

  6. Chagrov A. V., “Nontabularity—pretabularity, antitabularity, and coantitabularity,” in: Algebraic and Logical Constructions [Russian], Kalinin Univ., Kalinin, 1989, pp. 105–111.

    Google Scholar 

  7. Maksimova L. L. and Shraĭner P. A., “Recognition algorithms of tabularity and pretabularity in extensions of intuitionistic calculus,” Vestnik NGU. Ser. Mat., Mekh., Inform., 6, No. 2, 49–58 (2006).

    MATH  Google Scholar 

  8. Maksimova L. L. and Yun V. F., “Recognizable logics,” Algebra and Logic, 54, No. 2, 183–187 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  9. Maksimova L. L. and Yun V. F., “Slices over a minimal logic,” Algebra and Logic (to be published).

  10. Hosoi T., “On intermediate logics. I.,” J. Fac. Sci., Univ. Tokyo, Sec. IA, 14, 293–312 (1967).

    MathSciNet  MATH  Google Scholar 

  11. Dunn J. M. and Meyer R. K., “Algebraic completeness result for Dummett’s LC and its extensions,” Z. Math. Logik Grundlag. Math., Bd 17, 225–230 (1971).

    Article  MathSciNet  MATH  Google Scholar 

  12. Dummett M., “A propositional calculus with denumerable matrix,” J. Symb. Log., 24, 97–106 (1959).

    Article  MathSciNet  MATH  Google Scholar 

  13. Hosoi T. and Ono H., “The intermediate logics of the second slice,” J. Fac. Sci., Univ. Tokyo, Sec. IA, 17, 457–461 (1970).

    MathSciNet  MATH  Google Scholar 

  14. Maksimova L. and Voronkov A., “Complexity of some problems in modal and intuitionistic calculi,” Computer Science Logic 2003 (M. Baaz, J. A. Makowsky, ed.). Proc. 17th Int.Workshop, CSL 2003, 12th Annual Conference of the EACSL, and 8th Kurt Goedel Colloquium, KGC 2003 (Vienna, Austria, August 25–30, 2003). Berlin etc.: Springer-Verlag, 2003. P. 397–412 (Lect. Notes Comp. Sci.; V. 2803).

    Google Scholar 

  15. Papadimitriou C. H., Computational Complexity, Addison-Wesley, Reading, MA (1994).

    MATH  Google Scholar 

  16. Maksimova L., “Complexity of interpolation and related properties in positive calculi,” J. Symb. Log., 67, No. 1, 397–408 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  17. Maksimova L., “Complexity of some problems in positive and related calculi,” Theor. Comput. Sci., 303, No. 1, 171–185 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  18. Rautenberg W., Klassische und nichtklassische Aussagenlogik, Vieweg, Braunschweig, Wiesbaden (1979) (Logik und Grundlagen der Mathematik; Bd. 21).

    Book  MATH  Google Scholar 

  19. Gabbay D. M. and Maksimova L., Interpolation and Definability: Modal and Intuitionistic Logics, Clarendon Press, Oxford (2005).

    Book  MATH  Google Scholar 

  20. Segerberg K., “Propositional logics related to Heyting’s and Johansson’s,” Theoria, 34, 26–61 (1968).

    Article  MathSciNet  Google Scholar 

  21. Maksimova L. L., “A method of proving interpolation in paraconsistent extensions of the minimal logic,” Algebra and Logic, 46, No. 5, 341–353 (2007).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. L. Maksimova.

Additional information

Original Russian Text Copyright © 2016 Maksimova L.L. and Yun V.F.

The authors were partially supported by the State Maintenance Problem for the Leading Scientific Schools (Grant NSh–860.2014.1).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maksimova, L.L., Yun, V.F. The tabularity problem over the minimal logic. Sib Math J 57, 1034–1043 (2016). https://doi.org/10.1134/S0037446616060100

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0037446616060100

Keywords

Navigation