Abstract
We investigate the asymptotic behavior of solutions to damped hyperbolic equations involving strongly degenerate differential operators. First we establish the existence of a global attractor for the damped hyperbolic equation under consideration. Then we prove the finite dimensionality of the global attractor.
This is a preview of subscription content, access via your institution.
References
Babin A. V. and Vishik M. I., “Regular attractors of semigroups and evolution equations,” J. Math. Pures Appl., 62, No. 4, 441–491 (1983).
Chepyzhov V. V. and Vishik M. I., Attractors for Equations of Mathematical Physics, Amer. Math. Soc., Providence (2002) (Amer. Math. Soc. Colloq. Publ.; V. 49).
Robinson J. C., Infinite-Dimensional Dynamical Systems, Cambridge Univ. Press, Cambridge (2001).
Temam R., Infinite Dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, New York (1988).
Grushin V. V., “On a class of hypoelliptic operators,” Math. USSR-Sb., 12, No. 3, 458–476 (1970).
Thuy N. T. C. and Tri N. M., “Some existence and nonexistence results for boundary value problems (BVP) for semilinear elliptic degenerate operators,” Russ. J. Math. Phys., 9, No. 3, 366–371 (2002).
Thuy P. T. and Tri N. M., “Nontrivial solutions to boundary value problems for semilinear strongly degenerate elliptic differential equations,” Nonlinear Diff. Equ. Appl. (NoDEA), 19, 279–298 (2012).
Kogoj A. E. and Lanconelli E., “On semilinear p-Laplace equation,” Nonlinear Anal., 75, 4637–4649 (2012).
Luyen D. T. and Tri N. M., “Existence of solutions to boundary value problems for semilinear differential equations,” Math. Notes, 97, No. 1, 73–84 (2015).
Tri N. M., Semilinear Degenerate Elliptic Differential Equations. Local and Global Theories, Lambert Acad. Publ., Saarbrücken (2010).
Tri N. M., Recent Progress in the Theory of Semilinear Equations Involving Degenerate Elliptic Differential Operators, Publ. House Sci. Technology., Hanoi (2014).
Hale J. K., “Asymptotic behavior and dynamics in infinite dimensions,” in: Nonlinear Differential Equations (Granada, 1984), Pitman, Boston, MA, 1985, pp. 1–42 (Res. Notes Math.; V. 132).
Hale J. K. and Raugel G., “Attractors for dissipative evolutionary equations,” in: Proc. Conf. EQUADIFF-91 (Univ. Barcelona, Barcelona, August 26–31, 1991) (C.Perelló, C.Simó, and J.Solà-Morales, Eds.), World Sci. Publ. Co. Inc., River Edge, NJ, 1993, 1, pp. 3–22.
Babin A. B. and Vishik M. I., Attractors of Evolution Equations, Amsterdam etc., North-Holland (1992).
Feireisl E., “Finite-dimensional asymptotic behavior of some semilinear damped hyperbolic problems,” J. Dyn. Differ. Equations, 6, 23–35 (1994).
Anh C. T., Hung P. Q., Ke T. D., and Phong T. T., “Global attractor for a semilinear parabolic equation involving the Grushin operator,” Electron. J. Differ. Equ., No. 32, 1–11 (2008).
Kogoj A. E. and Sonner S., “Attractors met X-elliptic operators,” J. Math. Anal. Appl., 420, 407–434 (2014).
Thuy P. T. and Tri N. M., “Long time behavior of solutions to semilinear parabolic equations involving strongly degenerate elliptic differential operators,” Nonlinear Diff. Equ. Appl., 20, No. 3, 1213–1224 (2013).
Chueshov I. D., Introduction to the Theory of Infinite-Dimensional Dissipative Systems, ACTA Sci. Publ. House, Kharkov, Ukraine (2002).
Hale J. K., Asymptotic Behavior of Dissipative Systems, Amer. Math. Soc., Providence (1988) (Math. Surveys Monogr.; V. 25).
Raugel G., “Global attractors in partial differential equations,” in: Handbook of Dynamical Systems. Vol. 2, North-Holland, Amsterdam, 2002, pp. 885–892.
Pazy A., Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York (1983) (Appl. Math. Sci.; V. 44).
Sell G. R. and You Y., Dynamics of Evolutionary Equations, Springer-Verlag, New York (2002).
Pražák D., “On finite fractal dimension of the global attractor for the wave equation with nonlinear damping,” J. Dyn. Differ. Equations, 14, 763–776 (2002).
Author information
Authors and Affiliations
Corresponding author
Additional information
Original Russian Text Copyright © 2016 Luyen D.T. and Tri N.M.
Ninh Nhat; Hanoi. Translated from Sibirskiĭ Matematicheskiĭ Zhurnal, Vol. 57, No. 4, pp. 809–829, July–August, 2016; DOI: 10.17377/smzh.2016.57.407. Original article submitted March 20, 2015.
The authors are supported by the Vietnam National Foundation for Science and Technology Development (NAFOSTED) (Grant 101.02–2014.50).
Rights and permissions
About this article
Cite this article
Luyen, D.T., Tri, N.M. Large-time behavior of solutions to degenerate damped hyperbolic equations. Sib Math J 57, 632–649 (2016). https://doi.org/10.1134/S0037446616040078
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S0037446616040078
Keywords
- global solution
- global attractor
- Lyapunov functional
- degenerate damped hyperbolic equation
- l-trajectory
- finite dimensionality of attractors