Skip to main content
Log in

Graph surfaces over three-dimensional Lie groups with sub-Riemannian structure

  • Published:
Siberian Mathematical Journal Aims and scope Submit manuscript

Abstract

We study some class of graph mappings on certain three-dimensional Lie groups, derive special differential properties of these mappings, and prove the area formula for graph surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vodopyanov S. K., “Geometry of Carnot–Carathéodory spaces and differentiability of mappings,” in: The Interaction of Analysis and Geometry, pAmer. Math. Soc., Providence, 2007, pp. 247–301 (Contemp. Math.; 424).

    Chapter  Google Scholar 

  2. Karmanova M. B., “The graphs of Lipschitz functions and minimal surfaces on Carnot groups,” Siberian Math. J., 53, No. 4, 672–690 (2012).

    Article  MATH  MathSciNet  Google Scholar 

  3. Citti G. and Sarti A., “A cortical based model of perceptual completion in the rototranslation space,” Lecture Notes of Sem. Interdisciplinare Mat., 3, 145–161 (2004).

    Google Scholar 

  4. Hladky R. K. and Pauls S. D., “Minimal surfaces in the roto-translation group with applications to a neuro-biological image completion model,” J. Math. Imaging Vision, 36, No. 1, 1–27 (2010).

    Article  MathSciNet  Google Scholar 

  5. Petitot J., Neurogéométrie de la vision. ModÈles mathématiques et physiques des architectures fonctionelles, éd. école Polytech., Paris (2008).

    Google Scholar 

  6. Vittone D., Submanifolds in Carnot Groups, Edizioni della Normale, Pisa (2008).

    MATH  Google Scholar 

  7. Bigolin F., Intrinsic Regular Hypersurfaces in Heisenberg Groups and Weak Solutions of Non Linear First-Order PDEs, PhD Thesis, Univ. Degli Studi di Trento, Trento (2008).

    Google Scholar 

  8. Franchi B., Serapioni R., Serra Cassano F., “Regular hypersurfaces, intrinsic perimeter and implicit function theorem in Carnot groups,” Comm. Anal. Geom., 5, 909–944 (2003).

    Google Scholar 

  9. Kozhevnikov A., Rugosité des lignes de niveau des applications différentiables sur le groupe d’Heisenberg [Preprint], école Polytechnique, Palaiseau, France (2011).

    Google Scholar 

  10. Basalaev S. G., “Parametrization of level surfaces of real-valued mappings of Carnot groups,” Mat. Tr., 15, No. 2, 3–29 (2012).

    MathSciNet  Google Scholar 

  11. Basalaev S. G., “One-dimensional level surfaces of hc-differentiable mappings on Carnot–Carathéodory spaces,” Vestn. NGU, 13, No. 4, 16–36 (2013).

    Google Scholar 

  12. Agrachev A. and Barilari D., “Sub-Riemannian structures on 3D Lie groups,” J. Dynam. Control Syst., 18, No. 3, 21–44 (2012).

    Article  MATH  MathSciNet  Google Scholar 

  13. Basalaev S. G. and Vodopyanov S. K., “Approximate differentiability of mappings of Carnot–Carathéodory spaces,” Eurasian Math. J., 4, No. 2, 10–48 (2013).

    MATH  MathSciNet  Google Scholar 

  14. Gromov M., “Carnot–Carathéodory spaces seen from within,” in: Sub-Riemannian Geometry (Vol. 144), Birkhäuser, Basel, 1996, pp. 79–323.

    Chapter  Google Scholar 

  15. Nagel A., Stein E. M., and Wainger S., “Balls and metrics defined by vector fields. I: Basic properties,” Acta Math., 155, No. 1–2, 103–147 (1985).

    Article  MATH  MathSciNet  Google Scholar 

  16. Karmanova M. and Vodopyanov S., “Geometry of Carnot–Carathéodory spaces, differentiability, coarea and area formulas,” in: Analysis and Mathematical Physics. Trends in Mathematics, Birkhäuser, Basel, 2009, pp. 233–335.

    Chapter  Google Scholar 

  17. Karmanova M. and Vodopyanov S., “On local approximation theorem on equiregular Carnot–Carathéodory spaces,” in: Proc. INDAM Meeting on Geometric Control and Sub-Riemannian Geometry (Cortona, May 2012), Springer-Verlag, New York, 2014, pp. 241–262 (INDAM Series; V. 5).

    Google Scholar 

  18. Bonfiglioli A., Lanconelli E., and Uguzzoni F., Stratified Lie Groups and Potential Theory for Their Sub-Laplacians, Springer-Verlag, Berlin and Heidelberg (2007).

    MATH  Google Scholar 

  19. Karmanova M. B., “Fine properties of basis vector fields on Carnot–Carathéodory spaces under minimal assumptions on smoothness,” Siberian Math. J., 55, No. 1, 87–99 (2014).

    Article  MATH  MathSciNet  Google Scholar 

  20. Vodopyanov S. K., Integration by Lebesgue:// http://math.nsc.ru/-matanalyse/Lebesgue.pdf.

  21. de Guzmán M., Differentiation of Integrals in ℝn, Springer-Verlag, Berlin (1975) (Lecture Notes in Math., 481).

    Google Scholar 

  22. Vodopyanov S. K. and Ukhlov A. D., “Set functions and their applications in the theory of Lebesgue and Sobolev spaces. I,” Sib. Adv. Math., 14, No. 4, 78–125 (2004).

    MathSciNet  Google Scholar 

  23. Vodopyanov S. K. and Ukhlov A. D., “Set functions and their applications in the theory of Lebesgue and Sobolev spaces. II,” Sib. Adv. Math., 15, No. 1, 91–125 (2005).

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. B. Karmanova.

Additional information

Original Russian Text Copyright © 2015 Karmanova M.B.

Novosibirsk. Translated from Sibirskiĭ Matematicheskiĭ Zhurnal, Vol. 56, No. 6, pp. 1351–1365, November–December, 2015; DOI: 10.17377/smzh.2015.56.612.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karmanova, M.B. Graph surfaces over three-dimensional Lie groups with sub-Riemannian structure. Sib Math J 56, 1080–1092 (2015). https://doi.org/10.1134/S0037446615060129

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0037446615060129

Keywords

Navigation