Skip to main content
Log in

The morphism property of subelliptic equations on the roto-translation group

  • Published:
Siberian Mathematical Journal Aims and scope Submit manuscript

Abstract

We establish the morphism property of subelliptic equations for mappings with bounded distortion whose domain lies in the roto-translation group and whose range is the Heisenberg group. This implies that every nonconstant locally bounded mapping with bounded distortion whose domain and range lie in the roto-translation group is continuous, open, and discrete.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Reshetnyak Yu. G., Space Mappings with Bounded Distortion, Amer. Math. Soc., Providence (1989).

    MATH  Google Scholar 

  2. Reshetnyak Yu. G., “Space mappings with bounded distortion,” Siberian Math. J., 8, No. 3, 466–487 (1967).

    Article  Google Scholar 

  3. Bojarski B. and Iwaniec T., “Analytical foundations of the theory of quasiconformal mappings in R n,” Ann. Acad. Sci. Fenn. Ser. A I Math., 8, No. 2, 257–324 (1983).

    Article  MATH  MathSciNet  Google Scholar 

  4. Mostow G. D., Strong Rigidity of Locally Symmetric Spaces, Princeton Univ. Press, Princeton (1973) (Ann. Math. Stud.; No. 78).

    MATH  Google Scholar 

  5. Pansu P., “Métriques de Carnot–Carathéodory et quasiisométries des espaces symétriques de rang un,” Ann. Math., 129, No. 2, 1–60 (1989).

    Article  MATH  MathSciNet  Google Scholar 

  6. Korányi A. and Reimann H. M., “Foundations for the theory of quasiconformal mappings on the Heisenberg group,” Adv. Math., 111, No. 1, 1–87 (1995).

    Article  MATH  MathSciNet  Google Scholar 

  7. Vodop’yanov S. K., “Monotone functions and quasiconformal mappings on Carnot groups,” Siberian Math. J., 37, No. 6, 1113–1136 (1996).

    Article  MATH  MathSciNet  Google Scholar 

  8. Heinonen J. and Holopainen I., “Quasiregular maps on Carnot groups,” J. Geom. Anal., 7, No. 1, 109–148 (1997).

    Article  MATH  MathSciNet  Google Scholar 

  9. Dairbekov N. S., “The morphism property for mappings with bounded distortion on the Heisenberg group,” Siberian Math. J., 40, No. 4, 682–694 (1999).

    Article  MathSciNet  Google Scholar 

  10. Dairbekov N. S., “Mappings with bounded distortion on Heisenberg groups,” Siberian Math. J., 41, No. 3, 465–487 (2000).

    Article  MathSciNet  Google Scholar 

  11. Dairbekov N. S., “Mappings with bounded distortion of two-step Carnot groups,” in: Proceedings on Geometry and Analysis [in Russian], Sobolev Inst. Press, Novosibirsk, 2000, pp. 122–155.

    Google Scholar 

  12. Vodopyanov S. K., “Foundations of the theory of mappings with bounded distortion on Carnot groups,” Contemp. Math., 424, 303–344 (2007).

    Article  MathSciNet  Google Scholar 

  13. Agrachev A. and Barilari D., “Sub-Riemannian structures on 3D Lie groups,” J. Dynam. Control Systems, 18, No. 3, 21–44 (2012).

    Article  MATH  MathSciNet  Google Scholar 

  14. Citti G. and Sarti A., “A cortical based model of perceptual completion in the roto-translation space,” J. Math. Imaging Vis., 24, No. 3, 307–326 (2006).

    Article  MathSciNet  Google Scholar 

  15. Hladky R. K. and Pauls S. D., “Minimal surfaces in the roto-translation group with applications to a neuro-biological image completion model,” J. Math. Imaging Vision, 36, No. 1, 1–27 (2010).

    Article  MathSciNet  Google Scholar 

  16. Fässler K., Koskela P., and Le Donne E., “Nonexistence of quasiconformal maps between certain metric measure spaces,” International Mathematics Research Notices, 2014, available at http://imrn.oxfordjournals.org/content/early/2014/09/20/imrn.rnu153.full.pdf+html.

    Google Scholar 

  17. Basalaev S. G. and Vodopyanov S. K., “Approximate differentiability of mappings of Carnot–Carathéodory spaces,” Eurasian Math. J., 4, No. 2, 10–48 (2013).

    MATH  MathSciNet  Google Scholar 

  18. Mitchell J., “On Carnot–Carathéodory metrics,” J. Differential Geometry, 21, No. 1, 35–45 (1985).

    MATH  Google Scholar 

  19. Karmanova M. and Vodopyanov S., “Coarea formula for smooth contact mappings of Carnot–Carathéodory spaces,” Acta Appl. Math., 128, 67–111 (2013).

    Article  MATH  MathSciNet  Google Scholar 

  20. Evans L. C. and Gariepy R. F., Measure Theory and Fine Properties of Functions, CRC Press, Boca Raton (1992).

    MATH  Google Scholar 

  21. Bourbaki N., Integration. Vector Integration. Haar Measure. Convolution and Representations [Russian translation], Nauka, Moscow (1970).

    Google Scholar 

  22. Vodopyanov S. K., “Geometry of Carnot–Carathéodory spaces and differentiability of mappings,” Contemp. Math., 424, 247–301 (2007).

    Article  MathSciNet  Google Scholar 

  23. Reshetnyak Yu. G., “Sobolev-type classes of functions with values in a metric space,” Siberian Math. J., 38, No. 3, 567–582 (1997).

    Article  MathSciNet  Google Scholar 

  24. Vodopyanov S. K.,P-Differentiability on Carnot groups in different topologies and related topics,” in: Proceedings on Analysis and Geometry (ed. S. K. Vodopyanov), Sobolev Inst. Press, Novosibirsk, 2000, pp. 603–670.

    Google Scholar 

  25. Vodop’yanov S. K. and Isangulova D. V., “Differentiability of the mappings of Carnot–Carathéodory spaces in the Sobolev and BV-topologies,” Siberian Math. J., 48, No. 1, 46–67 (2007).

    MATH  MathSciNet  Google Scholar 

  26. Vodop’yanov S. K., “Differentiability of mappings in the geometry of Carnot manifolds,” Siberian Math. J., 48, No. 2, 197–213 (2007).

    Article  MathSciNet  Google Scholar 

  27. Karmanova M. and Vodopyanov S., “Geometry of Carnot–Carathéodory spaces, differentiability, coarea and area formulas,” in: Analysis and Mathematical Physics. Trends in Mathematics, Birkhäuser, Basel, 2009, pp. 233–335.

    Chapter  Google Scholar 

  28. Kaplan A., “Fundamental solutions for a class of hypoelliptic PDE generated by composition of quadratic forms,” Trans. Amer. Math. Soc., 258, No. 1, 147–153 (1980).

    Article  MATH  MathSciNet  Google Scholar 

  29. Derridj M., “Un probléme aux limites pour une classe d’opérateurs du second ordre hypoelliptiques,” Ann. Inst. Fourier, Grenoble, 21, No. 4, 99–148 (1971).

    Article  MATH  MathSciNet  Google Scholar 

  30. Derridj M., “Sur un théorème de traces,” Ann. Inst. Fourier, Grenoble, 22, No. 2, 73–83 (1972).

    Article  MathSciNet  Google Scholar 

  31. Hajłasz P., “Sobolev spaces on metric-measure spaces,” Contemp. Math., 338, 173–218 (2003).

    Article  Google Scholar 

  32. Capogna L. and Garofalo N., “Ahlfors type estimates for the perimeter measure in Carnot–Carathéodory spaces,” J. Geom. Anal., 16, No. 3, 455–497 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  33. Folland G. B. and Stein E. M., Hardy Spaces on Homogeneous Groups, Princeton Univ. Press, Princeton (1982) (Math. Notes, 28).

    MATH  Google Scholar 

  34. Vodopyanov S. K. and Ukhlov A. D., “Set functions and their applications in the theory of Lebesgue and Sobolev spaces. I,” Siberian Adv. Math., 14, No. 4, 78–125 (2004).

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Tryamkin.

Additional information

Original Russian Text Copyright © 2015 Tryamkin M.V.

Novosibirsk. Translated from Sibirskiĭ Matematicheskiĭ Zhurnal, Vol. 56, No. 5, pp. 1171–1194, September–October, 2015; DOI: 10.17377/smzh.2015.56.516

The author was partially supported by the Government of the Russian Federation (Grant 14.B25.31.0029).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tryamkin, M.V. The morphism property of subelliptic equations on the roto-translation group. Sib Math J 56, 936–954 (2015). https://doi.org/10.1134/S003744661505016X

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S003744661505016X

Keywords

Navigation