Skip to main content
Log in

Ricci flow on contact manifolds

  • Published:
Siberian Mathematical Journal Aims and scope Submit manuscript

Abstract

This paper is devoted to Ricci flow on contact manifolds. We define the contact curvature flow and establish a short time existence. Meanwhile, we study a contact Ricci soliton and prove that every solution of the unnormalized contact curvature flow is a selfsimilar solution corresponding to a contact Ricci soliton which is a steady soliton. Finally we show that a time dependent family of contact Einstein, Sasakian, K-contact, or η-Einstein 1-forms η t is a solution of the normalized contact curvature flow if it is a conformal variation of an initial 1-form η 0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lie S., Theorie der transformationsgruppen, Amer. Math. Soc., Chelsea (1970).

    MATH  Google Scholar 

  2. Boothby W. M. and Wang H. C., “On contact manifolds,” Ann. Math., 68, No. 2, 721–734 (1958).

    Article  MATH  MathSciNet  Google Scholar 

  3. Gray J. W., “Some global properties of contact structures,” Ann. Math., 69, No. 2, 421–450 (1959).

    Article  MATH  Google Scholar 

  4. Sasaki S. and Hatakeyama Y., “On differentiable manifolds with certain structures which are closely related to almost contact structure,” Tohoku Math. J. (2), 13, No. 2, 281–294 (1961).

    Article  MATH  MathSciNet  Google Scholar 

  5. Tashiro Y., “On contact structure of hypersurfaces in complex manifold,” Tohoku Math. J. (2), 15, No. 2, 62–78 (1963).

    Article  MATH  MathSciNet  Google Scholar 

  6. Blair D. E., Riemannian Geometry of Contact and Symplectic Manifolds, Birkhäuser, Boston (2010).

    Book  MATH  Google Scholar 

  7. Geiges H., “A brief history of contact geometry and topology,” Expo. Math., 19, No. 1, 25–53 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  8. Chow B. and Knopf D., The Ricci Flow: An Introduction. Vol. 110, Providence, Amer. Math. Soc. (2004).

  9. Hamilton R. S., “Three-manifolds with positive Ricci curvature,” J. Differential Geom., 17, No. 2, 255–306 (1982).

    MATH  MathSciNet  Google Scholar 

  10. Banaru M. B., “The Kenmotsu hypersurfaces axiom for 6-dimensional Hermitian submanifolds of the Cayley algebra,” Siberian Math. J., 55, No. 2, 210–214 (2014).

    Article  MATH  MathSciNet  Google Scholar 

  11. Smolentsev N. K., “On the space of Riemannian metrics on symplectic and contact manifolds,” Siberian Math. J., 42, No. 6, 1165–1169 (2001).

    Article  MathSciNet  Google Scholar 

  12. Streets J. and Tian G., “A parabolic flow of pluriclosed metrics,” Int. Math. Res. Not., 2010, No. 16, 3101–3133 (2010).

    MathSciNet  Google Scholar 

  13. Kushner A., Lychagin V., and Rubtsov V., Contact Geometry and Nonlinear Differential Equations. Vol. 101, Cambridge Univ. Press, Cambridge (2007).

  14. Song J. and Weinkove B., Lecture Notes on the Kähler–Ricci Flow, 2012, http://arxiv.org/abs/1212.3653.

    Google Scholar 

  15. Tanno S., “Variational problems on contact Riemannian manifolds,” Trans. Amer. Math. Soc., 314, No. 1, 349–379 (1989).

    Article  MATH  MathSciNet  Google Scholar 

  16. Piercey V. I., Lecture Notes on Contact Geometry, Univ. Arizona, Phoenix (2008).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Pirhadi.

Additional information

Original Russian Text Copyright © 2015 Pirhadi V. and Razavi A.

Tehran. Translated from Sibirskiĭ Matematicheskiĭ Zhurnal, Vol. 56, No. 5, pp. 1142–1153, September–October, 2015; DOI: 10.17377/smzh.2015.56.513.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pirhadi, V., Razavi, A. Ricci flow on contact manifolds. Sib Math J 56, 912–921 (2015). https://doi.org/10.1134/S0037446615050134

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0037446615050134

Keywords

Navigation