Skip to main content
Log in

Heights of minor faces in triangle-free 3-polytopes

  • Published:
Siberian Mathematical Journal Aims and scope Submit manuscript

Abstract

The height h(f) of a face f in a 3-polytope is the maximum of the degrees of vertices incident with f. A 4-face is pyramidal if it is incident with at least three 3-vertices. We note that in the (3, 3, 3, n)-Archimedean solid each face f is pyramidal and satisfies h(f) = n.

In 1940, Lebesgue proved that every quadrangulated 3-polytope without pyramidal faces has a face f with h(f) ≤ 11. In 1995, this bound was improved to 10 by Avgustinovich and Borodin. Recently, the authors improved it to 8 and constructed a quadrangulated 3-polytope without pyramidal faces satisfying h(f) ≥ 8 for each f.

The purpose of this paper is to prove that each 3-polytope without triangles and pyramidal 4-faces has either a 4-face with h(f) ≤ 10 or a 5-face with h(f) ≤ 5, where the bounds 10 and 5 are sharp.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Steinitz E., “Polyheder und Raumeinteilungen,” Enzykl. Math. Wiss. (Geometrie), 3, No. 3AB12, 1–139 (1922).

    Google Scholar 

  2. Lebesgue H., “Quelques conséquences simples de la formule d’Euler,” J. Math. Pures Appl., 19, 27–43 (1940).

    MathSciNet  Google Scholar 

  3. Borodin O. V., “Colorings of plane graphs: a survey,” Discrete Math., 313, No. 4, 517–539 (2013).

    Article  MATH  MathSciNet  Google Scholar 

  4. Ore O. and Plummer M. D., “Cyclic coloration of plane graphs,” in: Recent Progress in Combinatorics (ed. W. T. Tutte), Acad. Press, New York, 1969, pp. 287–293.

    Google Scholar 

  5. Plummer M. D. and Toft B., “Cyclic coloration of 3-polytopes,” J. Graph Theory, 11, 507–515 (1987).

    Article  MATH  MathSciNet  Google Scholar 

  6. Kotzig A., “From the theory of Eulerian polyhedra,” Mat. Čas., 13, 20–34 (1963).

    MATH  MathSciNet  Google Scholar 

  7. Borodin O. V., “Solving the Kotzig and Grünbaum problems on the separability of a cycle in planar graphs,” Mat. Zametki, 46, No. 5, 9–12 (1989). (English translation: Math. Notes, 46, No. 5–6, 835–837 (1989).)

    MATH  MathSciNet  Google Scholar 

  8. Grünbaum B., “Polytopal graphs,” in: Studies in Graph Theory. Part II (ed. D. R. Fulkerson), Washington, D. C., Math. Assoc. Amer., Vol. 12, 1975, pp. 201–224 (MAA Stud. Math.).

    Google Scholar 

  9. Plummer M. D., “On the cyclic connectivity of planar graphs,” in: Graph Theory and Applications, Springer-Verlag, Berlin, 1972, pp. 235–242.

    Chapter  Google Scholar 

  10. Kotzig A., “Extremal polyhedral graphs,” Ann. New York Acad. Sci., 319, 569–570 (1979).

    Google Scholar 

  11. Borodin O. V., “Minimal weight of a face in planar triangulations without 4-vertices,” Mat. Zametki, 51, No. 1, 16–19 (1992). (English translation: Math. Notes, 51, No. 1–2, 11–13 (1992).)

    MATH  MathSciNet  Google Scholar 

  12. Borodin O. V., “Triangulated 3-polytopes with restricted minimal weight of faces,” Discrete Math., 186, 281–285 (1998).

    Article  MATH  MathSciNet  Google Scholar 

  13. Horňák M. and Jendrol’ S., “Unavoidable sets of face types for planar maps,” Discus. Math. Graph Theory, 16, No. 2, 123–142 (1996).

    Article  MATH  Google Scholar 

  14. Borodin O. V. and Woodall D. R., “Weight of faces in plane maps,” Mat. Zametki, 64, No. 5, 648–657 (1998). (English translation: Math. Notes, 64, No. 5, 562–570).

    Article  MathSciNet  Google Scholar 

  15. Avgustinovich S. V. and Borodin O. V., “Neighborhoods of edges in normal maps,” Diskret. Anal. Issled. Oper., 2, No. 2–3, 3–9 (1995).

    MathSciNet  Google Scholar 

  16. Jendrol’ S. and Voss H.-J., “Light subgraphs of graphs embedded in the plane and in the projective plane: a survey,” Discrete Math., 313, No. 4, 406–421 (2013).

    Article  MATH  MathSciNet  Google Scholar 

  17. Borodin O. V., “Joint generalization of the theorems of Lebesgue and Kotzig on the combinatorics of planar maps,” Diskret. Mat., 3, No. 4, 24–27 (1991).

    MATH  MathSciNet  Google Scholar 

  18. Borodin O. V. and Loparev D. V., “The height of small faces in planar normal maps,” Diskretn. Anal. Issled. Oper., Ser. 1, 5, No. 4, 6–17 (1998). (English translation: Discrete Appl. Math., 135, No. 1–3, 31–39 (2004).)

    MATH  MathSciNet  Google Scholar 

  19. Borodin O. V. and Woodall D. R., “Cyclic degrees of 3-polytopes,” Graphs Comb., 15, 267–277 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  20. Ferencová B. and Madaras T., “Light graph in families of polyhedral graphs with prescribed minimum degree, face size, edge and dual edge weight,” Discrete Math., 310, 1661–1675 (2010).

    Article  MATH  MathSciNet  Google Scholar 

  21. Jendrol’ S., “Triangles with restricted degrees of their boundary vertices in plane triangulations,” Discrete Math., 196, 177–196 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  22. Kotzig A., “Contribution to the theory of Eulerian polyhedra,” Mat.-Fyz. Casopis, 5, 101–113 (1955).

    MathSciNet  Google Scholar 

  23. Madaras T. and Škrekovski R., “Heavy paths, light stars, and big melons,” Discrete Math., 286, 115–131 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  24. Madaras T. and Soták R., “The 10-cycle C10 is light in the family of all plane triangulations with minimum degree five,” Tatra Mt. Math. Publ., 18, 35–56 (1999).

    MATH  MathSciNet  Google Scholar 

  25. Mohar B., Škrekovski R., and Voss H.-J., “Light subgraphs in planar graphs of minimum degree 4 and edge-degree 9,” J. Graph Theory, 44, 261–295 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  26. Wernicke P., “Über den Kartographischen Vierfarbensatz,” Math. Ann., Bd 58, 413–426 (1904).

    Article  MATH  MathSciNet  Google Scholar 

  27. Borodin O. V., “Strengthening Lebesgue’s theorem on the structure of the minor faces in convex polyhedra,” Diskretn. Anal. Issled. Oper. Ser. 1, 9, No. 3, 29–39 (2002).

    MATH  MathSciNet  Google Scholar 

  28. Borodin O. V. and Ivanova A. O., “Describing 3-faces in normal plane maps with minimum degree 4,” Discrete Math., 313, No. 23, 2841–2847 (2013).

    Article  MATH  MathSciNet  Google Scholar 

  29. Borodin O. V., Ivanova A. O., and Kostochka A. V., “Describing faces in plane triangulations,” Discrete Math., 319, 47–61 (2014).

    Article  MATH  MathSciNet  Google Scholar 

  30. Borodin O. V. and Ivanova A. O., “The vertex-face weight of edges in 3-polytopes,” Siberian Math. J., 56, No. 2, 275–284 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Borodin.

Additional information

Original Russian Text Copyright © 2015 Borodin O.V. and Ivanova A.O.

The first author was supported by the Russian Foundation for Basic Research (Grants 12-01-00631 and 15-01-05867) and the State Maintenance Program for the Leading Scientific Schools of the Russian Federation (Grant NSh-1939.2014.1). The second author worked within the governmental task “Organization of Scientific Research” and supported by the Russian Foundation for Basic Research (Grant 12-01-98510).

Novosibirsk; Yakutsk. Translated from Sibirskiĭ Matematicheskiĭ Zhurnal, Vol. 56, No. 5, pp. 982–988, September–October, 2015; DOI: 10.17377/smzh.2015.56.502

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borodin, O.V., Ivanova, A.O. Heights of minor faces in triangle-free 3-polytopes. Sib Math J 56, 783–788 (2015). https://doi.org/10.1134/S003744661505002X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S003744661505002X

Keywords

Navigation