Skip to main content
Log in

Interpolation over the minimal logic and Odintsov intervals

  • Published:
Siberian Mathematical Journal Aims and scope Submit manuscript

Abstract

We study Craig’s interpolation property in the extensions of Johansson’s minimal logic. We consider the Odintsov classification of J-logics according to their intuitionistic and negative companions which subdivides all logics into intervals. We prove that the lower endpoint of an interval has Craig interpolation property if and only if both its companions do so. We also establish the recognizability of the lower and upper endpoints which have Craig interpolation property, and find their semantic characterization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Johansson I., “Der Minimalkalkül, ein reduzierter intuitionistische Formalismus,” Compos. Math., 4, 119–136 (1937).

    Google Scholar 

  2. Maksimova L. L., “Craig’s theorem in superintuitionistic logics and amalgamable varieties of pseudo-Boolean algebras,” Algebra and Logic, 16, No. 6, 427–455 (1977).

    Article  MathSciNet  Google Scholar 

  3. Craig W., “Three uses of the Herbrand-Gentzen theorem in relating model theory and proof theory,” J. Symbolic Logic, 22, No. 3, 269–285 (1957).

    Article  MATH  MathSciNet  Google Scholar 

  4. Maksimova L. L., “Craig’s interpolation theorem and amalgamable varieties,” Dokl. Akad. SSSR, 237, No. 6, 1281–1284 (1977).

    MathSciNet  Google Scholar 

  5. Maksimova L. L., “Implicit definability in positive logics,” Algebra and Logic, 42, No. 1, 37–53 (2003).

    Article  MathSciNet  Google Scholar 

  6. Maksimova L. L., “Interpolation and definability in extensions of the minimal logic,” Algebra and Logic, 44, No. 6, 407–421 (2005).

    Article  MathSciNet  Google Scholar 

  7. Maksimova L. L., “Decidability of the projective Beth property in varieties of Heyting algebras,” Algebra and Logic, 40, No. 3, 159–165 (2001).

    Article  MathSciNet  Google Scholar 

  8. Gabbay D. M. and Maksimova L., Interpolation and Definability: Modal and Intuitionistic Logics, Clarendon Press, Oxford (2005).

    Book  Google Scholar 

  9. Maksimova L. L., “The decidability of Craig’s interpolation property in well-composed J-logics,” Siberian Math. J., 53, No. 5, 839–852 (2012).

    Article  MATH  MathSciNet  Google Scholar 

  10. Maksimova L. L., “The projective Beth property in well-composed logics,” Algebra and Logic, 52, No. 2, 116–136 (2013).

    Article  MATH  MathSciNet  Google Scholar 

  11. Maksimova L. L., “Decidability of the weak interpolation property over the minimal logic,” Algebra and Logic, 50, No. 2, 106–132 (2011).

    Article  MATH  MathSciNet  Google Scholar 

  12. Maksimova L. L., “A method of proving interpolation in paraconsistent extensions of the minimal logic,” Algebra and Logic, 46, No. 5, 341–353 (2007).

    Article  MathSciNet  Google Scholar 

  13. Maksimova L. L., “Negative equivalence over the minimal logic and interpolation,” Sib. Elektron. Mat. Izv., 11, 1–17 (2014).

    Google Scholar 

  14. Odintsov S., “Logic of classic refutability and class of extensions of minimal logic,” Logic Log. Philos., 9, 91–107 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  15. Maksimova L. L., “Implicit definability in extensions of the minimal logic,” Logicheskie Issled., 8, 72–81 (2001).

    MathSciNet  Google Scholar 

  16. Odintsov S. P., Constructive Negations and Paraconsistency, Springer-Verlag, Dordrecht (2008) (Ser. Trends in Logic; V. 26).

    Book  MATH  Google Scholar 

  17. Maksimova L. L. and Yun V. F., “Recognizable logics,” Algebra and Logic, 54, No. 2 (2015).

    Google Scholar 

  18. Segerberg K., “Propositional logics related to Heyting’s and Johansson’s,” Theoria, 34, No. 1, 26–61 (1968).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. L. Maksimova.

Additional information

Original Russian Text Copyright © 2015 Maksimova L.L. and Yun V.F.

The authors were supported by the Russian Foundation for Basic Research (Grant 12-01-00168a) and the Presidential Grant Council for Government Support of Young Russian Scientists and the Leading Scientific Schools of the Russian Federation (Grant NSh-860.2014.1).

To Yuriĭ Leonidovich Ershov on the occasion of his jubilee.

__________

Translated from Sibirskiĭ Matematicheskiĭ Zhurnal, Vol. 56, No. 3, pp. 600–616, May–June, 2015

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maksimova, L.L., Yun, V.F. Interpolation over the minimal logic and Odintsov intervals. Sib Math J 56, 476–489 (2015). https://doi.org/10.1134/S0037446615030118

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0037446615030118

Keywords

Navigation