Skip to main content
Log in

Embedding theorems and a variational problem for functions on a metric measure space

  • Published:
Siberian Mathematical Journal Aims and scope Submit manuscript

Abstract

We use a new method to prove the Sobolev embedding theorem for functions on a metric space and study other questions of the theory of Sobolev spaces on a metric space. We prove the existence and uniqueness of solution to a variational problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sobolev S. L., Some Applications of Functional Analysis in Mathematical Physics, Amer. Math. Soc., Providence, RI (1991).

    MATH  Google Scholar 

  2. Maz’ya V. G., Sobolev Spaces, Springer-Verlag, Berlin (2011).

    Book  MATH  Google Scholar 

  3. Niko’skiĭ S. M., Approximation of Functions in Several Variables and Embedding Theorems [in Russian], Nauka, Moscow (1977).

    Google Scholar 

  4. Besov O. V., Il’in V. P., and Nikol’skiĭ S. M., Integral Representations of Functions and Embedding Theorems, John Wiley and Sons, New York etc. (1978).

    Google Scholar 

  5. Triebel H., “Limits of Besov norms,” Arch. Math., 96, No. 2, 169–175 (2011).

    Article  MATH  MathSciNet  Google Scholar 

  6. Bojarski B. and Haj’lasz P., “Pointwise inequalities for Sobolev functions and some applications,” Studia Math., 106, No. 1, 77–92 (1993).

    MATH  MathSciNet  Google Scholar 

  7. Haj’lasz P., “Sobolev spaces on an arbitrary metric spaces,” Potential Anal., 5, No. 4, 403–415 (1996).

    MathSciNet  Google Scholar 

  8. Franchi B., Haj’lasz P., and Koskela P., “Definitions of Sobolev classes on metric spaces,” Ann. Inst. Fourier, 49, No. 6, 1903–1924 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  9. Haj’lasz P. and Koskela P., “Sobolev met Poincaré,” Mem. Amer. Math. Soc., 145, No. 688, 1–101 (2000).

    MathSciNet  Google Scholar 

  10. Heinonen J., Lectures on Analysis on Metric Spaces, Springer-Verlag, Berlin (2001).

    Book  MATH  Google Scholar 

  11. Goldshtein V. M. and Troyanov M., “Axiomatic theory of Sobolev spaces,” Exposition. Math., 19, No. 4, 289–336 (2001).

    Article  MathSciNet  Google Scholar 

  12. Bojarski B., “Pointwise characterization of Sobolev classes,” Trudy Mat. Inst. Steklov., 255, No. 1, 71–87 (2006).

    MathSciNet  Google Scholar 

  13. Johnsson A., “Brownian motion on fractals and function spaces,” Math. Z., Bd 222, Heft 3, 495–504 (1996).

    Google Scholar 

  14. Barlow M. T., Diffusions on Fractals. Lectures on Probability Theory and Statistics, Springer-Verlag, Berlin (1998) (Lecture Notes Math.; V. 1690).

    Google Scholar 

  15. Lott J. and Villani C., “Ricci curvature for metric-measure spaces via optimal transport,” Ann. Math., 169, No. 3, 903–991 (2009).

    Article  MATH  MathSciNet  Google Scholar 

  16. Ambrosio L., Gigli N., and Savare G., Gradient Flows in Metric Spaces and in the Space of Probability Measures, Birkhäuser-Verlag, Basel (2008) (Lectures in Math. ETH Zurich).

    MATH  Google Scholar 

  17. Kuwada K., “Duality on gradient estimates and Wasserstein controls,” J. Funct. Anal., 258, No. 11, 3758–3774 (2010).

    Article  MATH  MathSciNet  Google Scholar 

  18. Romanovskiĭ N. N., “Sobolev spaces on an arbitrary metric measure space: compactness of embeddings,” Siberian Math. J., 54, No. 2, 353–367 (2013).

    Article  MATH  Google Scholar 

  19. Dezin A. A., “On embedding theorems and the problem of continuation of functions,” Dokl. Akad. Nauk SSSR, 88, No. 5, 741–743 (1953).

    MATH  MathSciNet  Google Scholar 

  20. Brudnyĭ Yu. A., “Criteria for the existence of derivatives in L p,” Math. USSR-Sb., 2, No. 1, 35–55 (1967).

    Article  Google Scholar 

  21. Ivanishko I. A. and Krotov V. G., “Compactness of embeddings of Sobolev type on metric measure spaces,” Math. Notes, 86, No. 6, 775–788 (2009).

    Article  MATH  MathSciNet  Google Scholar 

  22. Krotov V. G., “Criteria for compactness in L p-spaces, p > 0,” Sb.: Math., 203, No. 7, 1045–1064 (2012).

    MATH  MathSciNet  Google Scholar 

  23. Vodop’yanov S. K. and Romanovskiĭ N. N., “Sobolev classes of mappings on a Carnot-Carathéodory space: Various norms and variational problems,” Siberian Math. J., 49, No. 5, 814–828 (2008).

    Article  Google Scholar 

  24. Bonfiglioli A., Lanconelli E., and Uguzzoni F., Stratified Lie Groups and Potential Theory for Their Sub-Laplacians, Springer-Verlag, Berlin and Heidelberg (2007).

    MATH  Google Scholar 

  25. Jerison D., “The Poincaré inequality for vector fields satisfying Hörmander’s condition,” Duke Math. J., 53, No. 2, 503–523 (1986).

    Article  MATH  MathSciNet  Google Scholar 

  26. Pokhozhaev S. I., “On S. L. Sobolev’s embedding theorem in the case pl = n,” in: Dokl. Nauch.-Tekhn. Konf., MÈU, Moscow, 1965, pp. 158–170.

    Google Scholar 

  27. Hardy G. H. and Littlewood J. E., “Some properties of fractional integrals. I,” Math. Z., Bd 27, 565–606 (1928).

    Google Scholar 

  28. Trudinger N. S., “On embeddings into Orlicz spaces and some applications,” J. Math. Mech., 17, No. 5, 473–483 (1967).

    MATH  MathSciNet  Google Scholar 

  29. Cianchi A. A., “Sharp embedding theorem for Orlicz-Sobolev spaces,” Indiana Univ. Math. J., 45, No. 1, 39–65 (1996).

    Article  MATH  MathSciNet  Google Scholar 

  30. Trushin B. V., “Embedding of Sobolev space in Orlicz space for a domain with irregular boundary,” Math. Notes, 79, No. 5, 707–718 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  31. Clarkson J. A., “Uniformly convex spaces,” Trans. Amer. Math. Soc., 40, No. 3, 396–414 (1936).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. N. Romanovskiĭ.

Additional information

Original Russian Text Copyright © 2014 Romanovskiĭ N.N.

The author was supported by the Interdisciplinary Integration Project of the Siberian and Far East Divisions of the Russian Academy of Sciences (Grant No. 56) and the State Maintenance Program for the Junior Scientists and the Leading Scientific Schools of the Russian Federation (Grant NSh-921.2012.1).

__________

Translated from Sibirskiĭ Matematicheskiĭ Zhurnal, Vol. 55, No. 3, pp. 627–649, May–June, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romanovskiĭ, N.N. Embedding theorems and a variational problem for functions on a metric measure space. Sib Math J 55, 511–529 (2014). https://doi.org/10.1134/S0037446614030136

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0037446614030136

Keywords

Navigation