Skip to main content
Log in

Coefficient characterizations and sections for some univalent functions

  • Published:
Siberian Mathematical Journal Aims and scope Submit manuscript

Abstract

Let (α) denote the class of locally univalent normalized analytic functions f in the unit disk |z| < 1 satisfying the condition

$Re\left( {1 + \frac{{zf''(z)}} {{f'(z)}}} \right) < 1 + \frac{\alpha } {2}for|z| < 1 $

and for some 0 < α ≤ 1. We firstly prove sharp coefficient bounds for the moduli of the Taylor coefficients a n of f(α). Secondly, we determine the sharp bound for the Fekete-Szegö functional for functions in (α) with complex parameter λ. Thirdly, we present a convolution characterization for functions f belonging to (α) and as a consequence we obtain a number of sufficient coefficient conditions for f to belong to (α). Finally, we discuss the close-to-convexity and starlikeness of partial sums of f(α). In particular, each partial sum s n (z) of f(1) is starlike in the disk |z| ≤ 1/2 for n ≥ 11. Moreover, for f(1), we also have Re(s n (z)) > 0 in |z| ≤ 1/2 for n ≥ 11.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Duren P. L., Univalent Functions, Springer-Verlag, New York, Berlin, Heidelberg, and Tokyo (1983) (Grundlehren der mathematischen Wissenschaften; 259).

    MATH  Google Scholar 

  2. Goodman A. W., Univalent Functions. Vol. 1 and 2, Mariner Publishing Co., Tampa, Florida (1983).

    Google Scholar 

  3. Szegö G., “Zur Theorie der schlichten Abbildungen,” Math. Ann., 100, No. 1, 188–211 (1928).

    Article  MathSciNet  MATH  Google Scholar 

  4. Iliev L., “Classical extremal problems for univalent functions,” in: Complex Analysis. Vol. 11, Banach Center Publ., Warsaw, 1979, pp. 89–110.

    Google Scholar 

  5. Robertson M. S., “The partial sums of multivalently star-like functions,” Ann. Math., 42, No. 2, 829–838 (1941).

    Article  MATH  Google Scholar 

  6. Silverman H., “Radii problems for sections of convex functions,” Proc. Amer. Math. Soc., 104, No. 4, 1191–1196 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  7. Ruscheweyh S., “Extension of G. Szegö’s theorem on the sections of univalent functions,” SIAM J. Math. Anal., 19, No. 6, 1442–1449 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  8. Jenkins J. A., “On an inequality of Goluzin,” Amer. J. Math., 73, 181–185 (1951).

    Article  MathSciNet  MATH  Google Scholar 

  9. Bshouty D. and Hengartner W., “Criteria for the extremality of the Koebe mapping,” Proc. Amer. Math. Soc., 111, No. 2, 403–411 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  10. Prokhorov D., “Bounded univalent functions,” in: Handbook of Complex Analysis. Vol. 1: Geometric Function Theory, Elsevier, Amsterdam, 2002, pp. 207–228.

    Chapter  Google Scholar 

  11. Ruscheweyh St. and Sheil-Small T., “Hadamard products of schlicht functions and the Pólya-Schoenberg conjecture,” Comment. Math. Helv., 48, 119–135 (1973).

    Article  MathSciNet  MATH  Google Scholar 

  12. Ruscheweyh St., Convolutions in Geometric Function Theory, Les Presses de l’Université de Montréal. Montréal (1982).

    MATH  Google Scholar 

  13. Obradović M. and Ponnusamy S., “Starlikeness of sections of univalent functions,” Rocky Mountain J. Math. (to be published).

  14. Ozaki S., “On the theory of multivalent functions. II,” Sci. Rep. Tokyo Bunrika Daigaku. Sect. A., 4, 45–87 (1941).

    MathSciNet  MATH  Google Scholar 

  15. Umezawa T., “Analytic functions convex in one direction,” J. Math. Soc. Japan, 4, 194–202 (1952).

    Article  MathSciNet  MATH  Google Scholar 

  16. Ponnusamy S. and Rajasekaran S., “New sufficient conditions for starlike and univalent functions,” Soochow J. Math., 21, No. 2, 193–201 (1995).

    MathSciNet  MATH  Google Scholar 

  17. Jovanović I. and Obradović M., “A note on certain classes of univalent functions,” Filomat, No. 9, part 1, 69–72 (1995).

    Google Scholar 

  18. Ponnusamy S. and Vasudevarao A., “Region of variability of two subclasses of univalent functions,” J. Math. Anal. Appl., 332, No. 2, 1322–1333 (2007).

    Article  MathSciNet  Google Scholar 

  19. Rogosinski W. W., “On the coefficients of subordinate functions,” Proc. London Math. Soc., 48, 48–82 (1943).

    MathSciNet  MATH  Google Scholar 

  20. Fekete M. and Szegö G., “Eine Bemerkung über ungerade schlichte Funktionen,” J. London Math. Soc., 8, 85–89 (1933).

    Article  Google Scholar 

  21. Koepf W., “On the Fekete-Szegö problem for close-to-convex functions,” Proc. Amer. Math. Soc., 101, 89–95 (1987).

    MathSciNet  MATH  Google Scholar 

  22. Koepf W., “On the Fekete-Szegö problem for close-to-convex functions. II,” Arch. Math., 49, 420–433 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  23. London R. R., “Fekete-Szegö inequalities for close-to convex functions,” Proc. Amer. Math. Soc., 117, 947–950 (1993).

    MathSciNet  MATH  Google Scholar 

  24. Pfluger A., “The Fekete-Szegö inequality by a variational method,” Ann. Acad. Sci. Fenn. Ser. AI Math., 10, 447–454 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  25. Pfluger A., “The Fekete-Szegö inequality for complex parameters,” Complex Variables Theory Appl., 7, No. 1–3, 149–160 (1986).

    Article  MathSciNet  MATH  Google Scholar 

  26. Bhowmik B., Ponnusamy S., and Wirths K.-J., “On the Fekete-Szegö problem for concave univalent functions,” J. Math. Anal. Appl., 373, 432–438 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  27. Pommerenke Ch., Univalent Functions, Vandenhoeck and Ruprecht, Göttingen (1975).

    MATH  Google Scholar 

  28. Clunie J. G., “On meromorphic schlicht functions,” J. London Math. Soc., 34, 215–216 (1958).

    MathSciNet  Google Scholar 

  29. Robertson M. S., “Quasi-subordination and coefficient conjectures,” Bull. Amer. Math. Soc., 76, 1–9 (1970).

    Article  MathSciNet  MATH  Google Scholar 

  30. Hornich H., “Ein Banachraum analytischer Funktionen in Zusammenhang mit den schlichten Funktionen,” Monatsh. Math., Bd 73, 36–45 (1969).

    Article  MathSciNet  MATH  Google Scholar 

  31. Becker J. and Pommerenke Ch., “Schlichtheitskriterien und Jordangebiete,” J. Reine Angew. Math., Bd 354, 74–94 (1984).

    MathSciNet  MATH  Google Scholar 

  32. Obradović M. and Ponnusamy S., “Injectivity and starlikeness of sections of a class of univalent functions,” in: Complex Analysis and Dynamical Systems V (Israel Math. Conf. Proc. (IMCP)), Amer. Math. Soc., 2013 (to be published) (Contemp. Math.; V. 9).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Obradović.

Additional information

Original Russian Text Copyright © 2013 Obradović M., Ponnusamy S., and Wirths K.-J.

The first author was supported by the MNZZS (Grant ON174017, Serbia).

__________

Translated from Sibirskiĭ Matematicheskiĭ Zhurnal, Vol. 54, No. 4, pp. 852–870, July–August, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Obradović, M., Ponnusamy, S. & Wirths, K.J. Coefficient characterizations and sections for some univalent functions. Sib Math J 54, 679–696 (2013). https://doi.org/10.1134/S0037446613040095

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0037446613040095

Keywords

Navigation