Skip to main content
Log in

Estimation of the measure of the image of the ball

  • Published:
Siberian Mathematical Journal Aims and scope Submit manuscript

Abstract

Under study is the class of ring Q-homeomorphisms with respect to the p-module. We establish a criterion for a function to belong to the class and solve a problem that stems from M. A. Lavrentiev [1] on the estimation of the measure of the image of the ball under these mappings. We also address the asymptotic behavior of these mappings at a point.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lavrentiev M. A., The Variational Method in Boundary Value Problems for Systems of Elliptic Type Equations [in Russian], Izdat. AN SSSR, Moscow (1962).

    Google Scholar 

  2. Väisälä J., Lectures on n-Dimensional Quasiconformal Mappings, Springer-Verlag, Berlin etc. (1971) (Lecture Notes in Math.; 229).

    Google Scholar 

  3. Ikoma K., “On the distortion and correspondence under quasiconformal mappings in space,” Nagoya Math. J., 25, 175–203 (1965).

    MathSciNet  Google Scholar 

  4. Martio O., Rickman S., and Väisälä J., “Definitions for quasiregular mappings,” Ann. Acad. Sci. Fenn. Ser. A I Math., 448, 1–40 (1969).

    Google Scholar 

  5. Gehring F. W., Quasiconformal Mappings in Complex Analysis and Its Applications. Vol. 2, Int. Atomic Energy Agency, Vienna (1976).

    Google Scholar 

  6. Hesse J., “A p-extremal length and p-capacity equality,” Arc. Mat., 13, No. 1, 131–144 (1975).

    Article  MathSciNet  MATH  Google Scholar 

  7. Shlyk V. A., “The equality between p-capacity and p-modulus,” Siberian Math. J., 34, No. 6, 1196–1201 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  8. Goldstein V. M. and Reshetnyak Yu. G., Quasiconformal Mappings and Sobolev Spaces, Kluwer, Dordrecht (1983).

    Google Scholar 

  9. Kruglikov V. I., “Capacity of condensers and spatial mappings quasiconformal in the mean,” Math. USSR-Sb., 58, No. 1, 185–205 (1987).

    Article  MATH  Google Scholar 

  10. Golberg A., “Differential properties of (α, Q)-homeomorphisms,” in: Further Progress in Analysis, Proc. 6th ISAAC Congr., World Sci. Publ., Hackensack, NJ, 2009, pp. 218–228.

    Chapter  Google Scholar 

  11. Golberg A., “Integrally quasiconformal mappings in space,” Zb. Pr. Inst. Mat. NAN Ukr., 7, No. 2, 53–64 (2010).

    MathSciNet  MATH  Google Scholar 

  12. Gehring F. W., “Rings and quasiconformal mappings in space,” Trans. Amer. Math. Soc., 103, No. 3, 353–393 (1962).

    Article  MathSciNet  MATH  Google Scholar 

  13. Ryazanov V., Srebro U., and Yakubov E., “On ring solutions of Beltrami equations,” J. Anal. Math., 96, No. 1, 117–150 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  14. Ryazanov V. I. and Sevost’yanov E. A., “Equicontinuous classes of ring Q-homeomorphisms,” Siberian Math. J., 48, No. 6, 1361–1376 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  15. Salimov R. R. and Sevost’yanov E. A., “The theory of shell-based Q-mappings in geometric function theory,” Sb.: Math., 201, No. 6, 909–934 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  16. Saks S., Theory of the Integral [Russian translation], Izdat. Inostr. Lit., Moscow (1949).

    Google Scholar 

  17. Federer H., Geometric Measure Theory, Springer-Verlag, New York (1969).

    MATH  Google Scholar 

  18. Ransford T. J., Potential Theory in the Complex Plane, Cambridge Univ. Press, Cambridge (1995).

    Book  MATH  Google Scholar 

  19. Martio O., Ryazanov V., Srebro U., and Yakubov E., Moduli in Modern Mapping Theory, Springer Science + Business Media, LLC, New York (2009).

    MATH  Google Scholar 

  20. Sevost’yanov E. A., “Integral characterization of some generalizations of quasiregular mappings and the quantity of the condition for the divergence of the integral in geometric function theory,” Ukrain. Mat. Zh., 61, No. 10, 1367–1380 (2009).

    MathSciNet  MATH  Google Scholar 

  21. Gehring F. W. “Lipschitz mappings and the p-capacity of ring in n-space,” in: Advances in the Theory of Riemann Surfaces (Proc. Conf. Stonybrook, New York, 1969), Ann. Math. Stud., 1971, 66, pp. 175–193.

    MathSciNet  Google Scholar 

  22. Vodop’yanov S. K. and Ukhlov A. D., “Sobolev spaces and (P,Q)-quasiconformal mappings of Carnot groups,” Siberian Math. J., 39, No. 4, 665–682 (1998).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. R. Salimov.

Additional information

Original Russian Text Copyright © 2012 Salimov R.R.

__________

Translated from Sibirskiĭ Matematicheskiĭ Zhurnal, Vol. 53, No. 4, pp. 920–930, July–August, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salimov, R.R. Estimation of the measure of the image of the ball. Sib Math J 53, 739–747 (2012). https://doi.org/10.1134/S0037446612040155

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0037446612040155

Keywords

Navigation