Skip to main content

Approximation of the Stress–Strain Curves of Metallic Materials Subjected to a High Hydrostatic Pressure


A power law, in which the approximation parameters are uniquely determined by standard mechanical properties, is found to be best suited for extrapolating the functional dependence of the true stresses during the tension of cylindrical metallic samples at high strains. A method for calculating the ultimate strains during tension with a simultaneous action of hydrostatic pressure is proposed. The calculation results are shown to be in satisfactory agreement with the experimental data.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.


  1. B. N. Arzamasov, T. V. Solov’eva, S. A. Gerasimov, et al., Handbook of Structural Materials (Izd. MGTU, Moscow, 2006).

    Google Scholar 

  2. N. N. Malinin, Applied Theory of Plasticity and Creep: Textbook for Universities (Izd. Yurait, Moscow, 2020).

    Google Scholar 

  3. P. I. Polukhin, G. Ya. Gun, and A. M. Galkin, Plastic Deformation Resistance of Metals and Alloys (Metallurgiya, Moscow, 1976).

    Google Scholar 

  4. A. I. Alimov, S. A. Evsyukov, and R. Yu. Sukhorukov, “Improving the stability of the mechanical properties of the titanium alloy VT6 rings of rocket and gas turbine engines by forming a globular microstructure,” Probl. Mashinostr. Nadezhn. Mashin., No. 4, 68–76 (2019).

  5. E. V. Avtokratova, V. A. Andreev, and A. A. Antanovich Advanced Materials and Technologies, Ed. by V. V. Rubanik (Izd. UO VGTU, Vitebsk, 2019), Vol. 1.

    Google Scholar 

  6. A. M. Dmitriev and N. V. Korobova, “Expansion of the field of application of cold volumetric stamping of cylindrical bushings by combining them into a single part,” Izv. Tula Gos. Univ., Ser. Tekh. Nauki, No. 3, 444–453 (2020).

    Google Scholar 

  7. V. S. Semashko, A. L. Galinovskii, V. D. Belov, and M. I. Abashin, “Analysis of the prospects of ultrajet diagnostics for estimating the wear resistance of bimetallic tool,” Russ. Metall. (Metally), No. 13, 1389–1394 (2019).

  8. X. Li, A. L. Galinovsky, and L. V. Sudnik, “Comparison of diagnostic tools for cutting tools for the utilization of aerospace composite materials,” IOP Conf. Ser.: Mater. Sci. Eng. 709 (4), 044109 (2020).

  9. B. Storåkers, “Plastic and visko-plastic instability of a thin tube under internal pressure, torsion and axial tension,” Int. J. Mech. Sci. 10 (6), 519–529 (1968).

    Article  Google Scholar 

  10. R. Hill, “On discontinuous plastic states with special reference to localized necking in thin sheet,” J. Mech. Phys. Solids 1, 19–30 (1952).

    Article  Google Scholar 

  11. V. S. Kushner, M. G. Storchak, O. Yu. Burgonova, and D. S. Gubin, “Development of a mathematical model of the flow curve of alloys under adiabatic deformation conditions,” Zavod. Lab. 83 (5), 45–49 (2017).

    Article  Google Scholar 

  12. G. D. Del’, Technological Mechanics (Mashinostroenie, Moscow, 1978).

    Google Scholar 

  13. M. V. Gryazev, S. N. Larin, A. A. Pasynkov, and V. A. Bulychev, “To the development of a mathematical model of the drawing of a hardening material with a clamp through a radial die,” Izv. Tula Gos. Univ., Ser. Tekh. Nauki, No. 1, 172–178 (2018).

    Google Scholar 

  14. A. L. Vorontsov, “Theoretical support of technological mechanics. 4. Condition of plasticity, description of hardening and the relationship between stresses and strains,” Vestn. Mashinostr., No. 4, 62–70 (2013).

  15. S. Lo, S. A. Evsyukov, and Ch. Yu, “Investigation of the loss of stability during extraction into a cylindrical die without clamping,” Izv. Tula Gos. Univ., Ser. Tekh. Nauki, No. 8, 274–283 (2018).

    Google Scholar 

  16. A. V. Vlasov, “Thermomechanical fatigue of hot stamping dies,” Stal’, No. 9, 48–52 (2016).

  17. T. Kuwabara, “Advances in experiments on metal sheets and tubes in support of constitutive modeling and forming simulations,” Int. J. Plasticity 23, 385–419 (2007).

    Article  CAS  Google Scholar 

  18. A. M. Dmitriev and A. L. Vorontsov, “Approximation of metal hardening curves,” Kuzn.-Shtamp. Proizv. Obrab. Mater. Davleniem, No. 6, 16–22 (2002).

    Google Scholar 

  19. V. A. Tarasov, Analysis Methods in Mechanical Engineering Technology. Analytical Modeling of the Dynamic Processes of Material Processing (Izd. MGTU, Moscow, 1996).

    Google Scholar 

  20. A. S. Chumadin, Theory and Calculations of Sheet Stamping Processes (Eksposervis VIP, Moscow, 2014).

    Google Scholar 

  21. P. M. Ogar and D. B. Gorokhov, “Relation between the strain during indentation of a spherical indenter and the strain during tension,” Aktual. Problemy Mashinostr., No. 3, 479–485 (2016).

  22. G. L. Baranov, “Influence of the shape of a hardening curve on the axial stress in the crimping section of a die on drawing a round bar,” Stal’, No. 3, 24–27 (2018).

  23. M. A. Baburin, V. D. Baskakov, N. V. Gerasimov, O. V. Zarubina, and V. A. Tarasov, “Analysis of the shape change of blanks on drawing hemispherical parts using intermediate deformable media,” Kuzn.-Shtamp. Proizv. Obrab. Mater. Davleniem, No. 7, 21–24 (2014).

    Google Scholar 

  24. A. S. Sof’in, V. D. Baskakov, and V. A. Tarasov, “Estimation of the springing of spherical linings during liquid crimping calibration,” Nauka Obrazov., No. 10, 4 (2012).

  25. V. A. Tarasov, V. D. Baskakov, M. A. Baburin, and D. S. Boyarskii, “Approximation of the stress–strain curves of steels using their mechanical characteristics,” Chern. Metal., No. 8(1064), 59–63 (2020).

  26. N. A. Shestakov, V. N. Subich, and V. A. Demin, Compaction, Consolidation, and Fracture of Porous Materials (Fizmatlit, Moscow, 2011).

    Google Scholar 

  27. A. I. Tselikov, Theory of Calculating the Forces in Rolling Mills (Metallurgizdat, Moscow, 1962).

    Google Scholar 

  28. V. D. Baskakov, O. V. Zarubina, K. A. Karnaukhov, and V. A. Tarasov, “Improvement of the methods of calculating the penetration effect of shaped charges,” Izv. Ross. Akad. Raket. Artill. Nauk, No. 2 (102), 71–76 (2018).

    Google Scholar 

  29. P. Bridgman, Investigation of Large Plastic Strains and Rupture: Effect of High Hydrostatic Pressure on the Mechanical Properties of Materials (URSS-Librocom, Moscow, 2010).

    Google Scholar 

  30. J. F. Bell, Experimental Fundamentals of the Mechanics of Deformable Solids. Part 2. Finite Strains (Nauka: Moscow, 1984).

    Google Scholar 

  31. L. S. Vasiliev and S. L. Lomaev, “Effect of pressure on the formation and evolution of a nanostructure in plastically deformable metals and alloys,” Fiz. Met. Metalloved. 120 (6), 654–660 (2019).

    Google Scholar 

  32. P. V. Trusov, E. R. Sharifullina, and A. I. Schveikin, “Multilevel model for describing the plastic and superplastic deformation of polycrystalline materials,” Fizich. Mezomekh. 22 (2), 5–23 (2019).

    Google Scholar 

  33. M. A. Tel’kanov and P. S. Volegov, “Taking into account the disclination mechanisms of deformation refinement of a granular structure in inelastic deformation models for polycrystals,” Mat. Model. Estestv. Naukakh 1, 291–296 (2018).

    Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to V. A. Tarasov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by K. Shakhlevich

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tarasov, V.A., Gerasimov, N.V., Baskakov, V.D. et al. Approximation of the Stress–Strain Curves of Metallic Materials Subjected to a High Hydrostatic Pressure. Russ. Metall. 2022, 375–379 (2022).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • stress
  • strain
  • stress–strain curve
  • hydrostatic pressure
  • ultimate strains
  • temperature