Skip to main content

Effect of Small Alloying Additions on the Mechanical Properties of Sintered Al–Sn Composites

Abstract

The Al–Sn composites prepared by liquid phase sintering of a mixture of alloyed aluminum and tin powders are studied. A small amount of alloying additions (Zn, Mg, Si, Cu) is found to promote substantial hardening of the aluminum matrix during its treatment by equal channel angular pressing, but these additions decrease the plastic properties. The maximum strength and the minimum plasticity are detected in the samples alloyed with 2% Cu.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

REFERENCES

  1. A. E. Mironov, N. A. Belov, and O. O. Stolyarova, Aluminum Antifriction Alloys (ID MISiS, Moscow, 2016).

  2. N. M. Rusin, A. L. Skorentsev, and E. A. Kolubaev, “Effect of equal-channel angular pressing on mechanical and tribological properties of sintered Al–Sn composites,” J. Mater. Eng. Perform. 29 (3), 1955–1963 (2020).

    CAS  Article  Google Scholar 

  3. K. Q. Song, Z. C. Lu, M. Zhu, R. Z. Hu, and M. Q. Zeng, “A remarkable enhancement of mechanical and wear properties by creating a dual-scale structure in an Al–Sn–Si alloy,” Surf. Coat. Technol. 325, 682–688 (2017).

    CAS  Article  Google Scholar 

  4. N. M. Rusin, A. L. Skorentsev, and I. P. Mishin, “Evolution of the structure and properties of Al–Sn composites under deformation,” Perspekt. Mater., No. 6, 5–17 (2015).

  5. N. I. Noskova, L. G. Korshunov, and A. V. Korznikova, “Microstructure and tribological properties of Al–Sn, Al–Sn–Pb, and Sn–Sb–Cu alloys subjected to severe plastic deformation,” Materialoved. Term. Obrab. Met., No. 12, 34–40 (2008).

  6. O. Hernandez and G. Gonzalez, “Microstructural and mechanical behavior of highly deformed Al–Sn alloys,” Mater. Charact. 59, 534–541 (2008).

    CAS  Article  Google Scholar 

  7. G. B. Schaffer, T. B. Sercombe, and R. N. Lumley, “Liquid phase sintering of aluminium alloys,” Mater. Chem. Phys. 67, 85–91 (2001).

    CAS  Article  Google Scholar 

  8. V. G. Gopienko, V. P. Cherepanov, A. I. Galanov, S. Yu. Petrovich, E. A. Lipukhin, V. P. Burov, and N. V. Manannikov, “An installation for preparation of metallic powders by melt spraying,” RF Patent 2229960 (2004).

  9. R. Z. Valiev, A. P. Zhilyaev, and T. J. Langdon, Bulk Nano-Structured Materials: Fundamentals and Applications (Eko-Vektor, St. Petersburg, 2017).

    Google Scholar 

  10. N. M. Rusin, “A device for severe deformation working of plastic materials (variants),” RF Patent 70846 (2008).

  11. R. Reda, “Equal-channel angular pressing (ECAP): die design, processing handicaps and mechanical characterization,” Evol. Mech. Eng. 2 (5), (2019). https://doi.org/10.31031/EME.2019.02.000547

  12. V. M. Segal, “Equal channel angular extrusion: from macromechanics to structure formation,” Mater. Sci. Eng. A 271, 322–333 (1999).

    Article  Google Scholar 

  13. S. P. Divya, M. Nagaraj, M. Kesavamoorthy, S. A. Srinivasan, and B. Ravisankar, “Investigation on the effect of ECAP routes on the wear behavior of AA2014,” Trans. Indian Inst. Met. 71 (1), 67–77 (2018).

    CAS  Article  Google Scholar 

  14. N. M. Rusin, “Effect of ECAP routs on the specific features of the “end effect”,” Fiz. Met. Metalloved. 102 (2), 242–249 (2006).

    CAS  Google Scholar 

  15. M. Furukawa, Y. Iwahashi, Z. Horita, M. Nemoto, N. K. Tsenev, R. Z. Valiev, and T. G. Langdon, “Structural evolution and the Hall–Petch relationship in an Al–Mg–Li–Zr alloy with ultra-fine grain size,” Acta Mater. 45 (11), 4751–4757 (1997).

    CAS  Article  Google Scholar 

  16. E. V. Kozlov, A. M. Glezer, N. A. Koneva, N. A. Popova, and I. A. Kurzina, Foundations of Plastic Deformation of Nano-Structured Materials (Fizmatlit, Moscow, 2016).

    Google Scholar 

  17. R. W. Honeycombe, Plastic Deformation of Metals (Mir, Moscow, 1972).

  18. M. I. Abd El Aal, N. El Mahallawy, F. A. Shehata, M. Abd El Hameed, E. Y. Yoon, J. H. Lee, and H. S. Kim, “Tensile properties and fracture characteristics of ECAP-processed Al and Al–Cu alloys,” Met. Mater. Int. 16 (5), 709–716 (2010).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The electron-microscopic studies were performed using the equipment of the Share Use Centre “Nanotech” at the Institute of Strength Physics and Materials Science, Siberian Branch, Russian Academy of Sciences.

Funding

This study was performed in terms of state task of the Institute of Strength Physics and Materials Science, Siberian Branch, Russian Academy of Sciences, theme no. FWRW-2021-0006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Skorentsev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by N. Kolchugina

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rusin, N.M., Skorentsev, A.L. Effect of Small Alloying Additions on the Mechanical Properties of Sintered Al–Sn Composites. Russ. Metall. 2022, 325–331 (2022). https://doi.org/10.1134/S0036029522040255

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036029522040255

Keywords:

  • aluminium-matrix composite
  • sintering
  • equal channel angular pressing
  • mechanical properties