V. I. Gromov, N. A. Kurpyakova, E. N. Korobova, and O. V. Sedov, “New heat-resistant steel for aviation bearings,” Trudy VIAM, No. 2 (74), St. 02 (2019). https://doi.org/10.18577/2307-6046-2019-0-2-17-23
N. O. Yakovlev, O. V. Sedov, I. V. Gulina, and A. V. Grinevich, “Fractographic study of the fracture of bearing steel,” Trudy VIAM, No. 2 (86), St. 10 (2020). https://doi.org/10.18577/2307-6046-2020-0-2-91-100
A. V. Grinevich, A. V. Slavin, N. O. Yakovlev, and I. V. Gulina, “Phenomenon of spall fracture during tension,” Deform. Razrushenie Mater., No. 4, 43–48 (2020). https://doi.org/10.31044/1814-4632-2020-4-43-48
S. A. Novikov, “Fracture of materials under intense impact loads,” Soros. Obrazovat. Zh., No. 8, 116–121 (1999).
Physics of Explosion, Ed. by L. P. Orlenko, 3rd ed. (Fizmatlit, Moscow, 2004), Vol. 2.
Google Scholar
A. A. Utkin, Yu. V. Petrov, and I. V. Smirnov, Structure–Time Theory of Spall Fracture (Politekhnika, St. Petersburg, 2016).
Google Scholar
G. I. Kannel’, S. V. Razorenov, and V. E. Fortov, “Submicrosecond strength of materials,” Mekh. Tverdogo Tela, No. 4, 86–113 (2005).
Google Scholar
A. N. Dremin and A. M. Molodets, “Kinetic characteristics of spall fracture,” Prikl. Mekh. Tekh., No. 6, 85–95 (1980).
I. V. Smirnov and A. A. Utkin, “Spall fracture effects in the nanosecond action range,” Vestn. Nizhegorod. Univ., No. 4(4), 1776–1777 (2011).
V. M. Finkel’, Physics of Fracture (Metallurgiya, Moscow, 1970).
Google Scholar
T. Nicholas, Elastoplastic Stress Waves/Impact Dynamics (Mir, Moscow, 1985).
V. N. Nikolaevskii, “Dynamic strength and fracture speed,” in Impact, Explosion, and Fracture (Mir, Moscow, 1981), pp. 166–203.
E. N. Kablov, “Innovative solutions of FGUP VIAM GNTs RF for ‘Strategic Directions of Designing Materials and Technologies of Their Processing until 2030,’” Aviats. Mater. Tekhnol., No. 1(34), 3–33 (2015). https://doi.org/10.18577/2071-9140-2015-0-1-3-33