Skip to main content

Sliding Friction of R6M5 Steel on Grade 45 Steel Using a Litol-24 Lubricant Modified by MoS2 Particles


The influence of adding 10 wt % MoS2 particles to a Litol-24 lubricant on the sliding friction of R6M5 steel on grade 45 steel according to the roller–roller scheme is studied at a load of up to 800 N and a rotation speed of 1500 min–1. The determined general laws of sliding friction are shown not to change in comparison with the previously established ones. The dependences of the frictional force on the normal force (load) have two linear sections, in which the Amonton–Coulomb law is valid. In general, the generalized version of the Amonton–Coulomb law also holds true. The addition of MoS2 increases the lubricant viscosity and the bearing capacity of the lubricant layer. In the load range 510–725 N, the critical load increases by ≈1.6 times and the best antifriction characteristics are achieved.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.


  1. Y. Meng, Y. Ma, S. Chen, Y. Han, S. Chen, J. Huang, and J. Yang, “Friction stir butt welding of magnesium alloy to steel by truncated cone-shaped stirring pin with threads,” J. Mater. Process. Technol. 291, 117038 (2021).

    CAS  Article  Google Scholar 

  2. F. Yasmin, K. F. Tamrin, N. A. Sheikh, P. Barroy, A. Yassin, A. A. Khan, and S. Mohamaddan, “Laser-assisted high-speed machining of 316 stainless steel: the effect of water-soluble sago starch based cutting fluid on surface roughness and tool wear,” Materials 14 (5), 1311 (2021).

    CAS  Article  Google Scholar 

  3. A. T. Abbas, S. Anwar, E. Abdelnasser, M. Luqman, Q. J. E. Abu, and A. Elkaseer, “Effect of different cooling strategies on surface quality and power consumption in finishing end milling of stainless steel 316,” Materials 14 (4), 903 (2021).

    CAS  Article  Google Scholar 

  4. L. Xu, W. Song, S. Ma, Y. Zhou, K. Pan, and S. Wei, “Effect of slippage rate on frictional wear behaviors of high-speed steel with dual-scale tungsten carbides (M6C) under high-pressure sliding–rolling condition,” Tribology Int. 154, 106719 (2021).

    CAS  Article  Google Scholar 

  5. K. Sun, W. Peng, B. Wei, Y. Longlong, and F. Liang, “Friction and wear characteristics of 18Ni(300) maraging steel under high-speed dry sliding conditions,” Materials 13 (7), 1485 (2020).

    CAS  Article  Google Scholar 

  6. Z. Liu, P. Fu, J. Zhao, F. Ji, Y. Zhang, H. Nagaumi, X. Wang, Y. Zhao, P. Jia, and W. Li, “Corrosion and high-temperature tribological behavior of carbon steel claddings by additive manufacturing technology,” Surf. Coat. Technol. 384, 125325 (2018).

    Article  Google Scholar 

  7. S. Ananth, J. U. Prakash, R. K. Murthy, K. V. A. Pillai, and T. V. Moorthy, “Tribological behavior of grey cast iron-EN31 steel contact under sliding conditions,” Trans. Indian Inst. Metals 73 (3), 793–798 (2020).

    CAS  Article  Google Scholar 

  8. N. A. Zabala, P. A. Castro, and W. R. Tuckart, “Influence of roughness on the tribological behavior of a steel–steel couple lubricated with thread compound,” Latin American Appl. Res. 49 (3), 193–200 (2019).

    CAS  Article  Google Scholar 

  9. A. D. Breki, A. E. Gvozdev, A. G. Kolmakov, and N. N. Sergeev, “Investigation of the spinning friction of ShKh15 steel on P6M5 and 10P6M5-MP steels using mathematical modeling,” Materialoved., No. 12, 40–45 (2018).

  10. A. D. Breki, A. E. Gvozdev, and A. G. Kolmakov, “Semiempirical mathematical models of the spinning friction of ShKh-15 steel on R6M5 steel according to the ball–plane scheme with allowance for wear,” Materialoved., No. 2, 43–48 (2019).

  11. G. V. Ratkevich, I. A. Smolyakova, L. E. Afanas’eva, and M. V. Novoselova, “Effect of the tempering temperature on the tribotechnical properties of laser-hardened high-speed steel,” in Mechanics and Physics of Processes on the Surface and in Contact with Solids, Parts of Technological and Power Equipment: Inter-University Collection of Articles (TvGTU, Tver, 2019), Vol. 12, 96–102.

  12. A. E. Gvozdev, A. G. Kolmakov, D. A. Provotorov, N. N. Sergeev, and D. N. Bogolyubova, “Dependence of superplasticity indicators of hard-to-form steels P6M5 and 10P6M5-MP on a stress state scheme,” Deform. Razrushenie Mater., No. 11, 42–46 (2015).

  13. S. G. Chulkin, A. V. Fedosov, and S. P. Alekseev, “Study of plastic lubricants for metal-cutting machines and auxiliary equipment,” Instrument Tekhnol., No. 24–25, 214–216 (2006).

  14. V. I. Zhornik, A. V. Ivakhnik, and A. V. Zapolsky, “Mechanism of formation of heterogeneous dispersed phase of greases with participation of nanosized additives and its influence on properties of lubricants,” Mechanics of Machines, Mechanisms and Materials, No. 3 (52), 63–70 (2020).

    Article  Google Scholar 

  15. N. Kumar, V. Saini, and J. Bijwe, “Tribological investigations of nano- and micro-sized graphite particles as an additive in lithium-based grease,” Tribology Lett. 68 (4), 124 (2020).

    CAS  Article  Google Scholar 

  16. Z. Sun, C. Xu, Y. Peng, Y. Shi, and Y. Zhang, “Fretting tribological behaviors of steel wires under lubricating grease with compound additives of graphene and graphite,” Wear 454, 203333 (2020).

    Article  Google Scholar 

  17. C. M. Kalyan, A. W. Yimin, E. Ali, and V. S. Anirudha, “Graphene– MoS2 ensembles to reduce friction and wear in DLC-Steel contacts,” Carbon 146, 524–527 (2019).

    Article  Google Scholar 

  18. T. W. Scharf and S. V. Prasad, “Solid lubricants: a review,” J. Mater. Sci. 48, 511–531 (2013).

    CAS  Article  Google Scholar 

  19. C. Donnet, J. M. Martin, T. le Mogne, and M. Belin, “Superlow friction of MoS2 coatings in various environments,” Tribology Int. 29, 123–128 (1996).

    CAS  Article  Google Scholar 

  20. H. Lin, M. Yang, and B. Shu, “Fretting wear behaviour of high-nitrogen stainless bearing steel under lubrication condition,” J. Iron Steel Res. Int. 27 (7), 849–866 (2020).

    CAS  Article  Google Scholar 

  21. I. A. Buyanovskii, I. R. Tatur, V. D. Samusenko, and V. S. Solenov, “Effect of antifriction solid additives on the temperature stability of bentonite greases,” J. Friction Wear 41 (6), 492–496 (2020).

    Article  Google Scholar 

  22. W. Huai, X. Chen, F. Lu, C. Zhang, L. Ma, and S. Wen, “Tribological properties of sulfur- and phosphorus-free organic molybdenum compound as additive in oil,” Tribology Int. 141, 105944 (2020).

    CAS  Article  Google Scholar 

  23. N. Nagare and H. N. Kudal, “A Taguchi approach on influence of molybdenum disulfide as an anti-wear additive on the performance of lithium grease,” in Proceedings of 6th Asia International Conference on Tribology (Sarawak, 2018), pp. 59–60.

  24. E. Z. Hu, Y. Xu, K. H. Hu, and X. G. Hu, “Tribological properties of 3 types of MoS2 additives in different base greases,” Lubrication Sci. 29 (8), 541–555 (2017).

    CAS  Article  Google Scholar 

  25. R. R. Sahoo and S. K. Biswas, “Effect of layered MoS2 nanoparticles on the frictional behavior and microstructure of lubricating greases,” Tribology Lett. 53, 157–171 (2014).

    CAS  Article  Google Scholar 

  26. S. Z. Chavoshi, “A study on the influences of Coulomb–Amonton’s and Prandtl’s constant friction laws on the hot closed-die forging process of AA7075,” Int. J. Interactive Design Manuf. 11 (4), 851–858 (2017).

    Article  Google Scholar 

  27. V. V. Izmailov and M. V. Novoselova, “Friction characteristics of metal friction pairs and the Coulomb–Amonton’s laws of friction,” Trenie Iznos 40 (5), 473–478 (2019).

    Google Scholar 

  28. V. F. Zhuravlev, “On the history of the law of dry friction,” Izv. Ross. Akad. Nauk, Ser. Mekh. Tverd. Tela, No. 4, 13–19 (2013).

    Google Scholar 

  29. A. A. Kireenkov, S. Semendyaev, and V. F. Filatov, “Experimental study of coupled two-dimensional models of sliding and spinning friction,” Izv. Ross. Akad. Nauk, Ser. Mekh. Tverd. Tela, No. 6, 192–202 (2010).

    Google Scholar 

  30. A. D. Breki, V. V. Medvedeva, N. A. Krylov, A. G. Kolmakov, Yu. A. Fadin, A. E. Gvozdev, N. N. Sergeev, S. E. Aleksandrov, and D. A. Provotorov, “Antiwear properties of plastic lubricating composite materials Litol 24–magnesium hydrosilicate particles,” Materialoved., No. 3, 38–42 (2017).

  31. B. V. Deryagin, “Molecular theory of friction and sliding,” Zh. Fiz. Khim. 5, 1165–1172 (1934).

    CAS  Google Scholar 

  32. B. V. Deryagin, N. A. Krotova, and V. P. Smilga, Adhesion of Solids (Nauka, Moscow, 1973).

    Google Scholar 

  33. A. D. Breki, S. G. Chulkin, A. E. Gvozdev, and O. V. Kuzovleva, “On the evolution of the mathematical models of the sliding friction of solids,” Chebyshevskii Sbornik 21 (4(76)), 321–326 (2020).

    Article  Google Scholar 

  34. A. Breki and M. Nosonovsky, “Ultraslow frictional sliding and the stick–slip transition,” Appl. Phys. Lett. 113 (24), 241602 (2018).

    Article  Google Scholar 

  35. A. Breki and M. Nosonovsky, “Einstein’s viscosity equation for nanolubricated friction,” Langmuir 34 (43), 12968–12973 (2018).

    CAS  Article  Google Scholar 

  36. A. D. Breki and A. E. Gvozdev, “On the dependence of the viscosity of oils on the presence of nanoparticles of solid lubricants and suspended wear particles in them using the empirical Walter equation,” Izv. TulGU, Ser. Tekhn. Nauki, No. 3, 90–98 (2017).

    Google Scholar 

  37. B. I. Kostetskii, Friction, Lubrication, and Wear in Machines (Tekhnika, Kiev, 1970).

    Google Scholar 

Download references


The work performed at the Institute of Problems of Mechanical Engineering was carried out within the framework of state task no. AAAA-A18-118012190023-2; the work performed at the Baikov Institute of Metallurgy and Materials Science, within the framework of state task no. 075-00328-21-00.

Author information

Authors and Affiliations


Corresponding author

Correspondence to A. E. Gvozdev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by K. Shakhlevich

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Breki, A.D., Chulkin, S.G., Gvozdev, A.E. et al. Sliding Friction of R6M5 Steel on Grade 45 Steel Using a Litol-24 Lubricant Modified by MoS2 Particles. Russ. Metall. 2022, 424–429 (2022).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • sliding friction
  • Amonton–Coulomb friction law
  • plastic lubricant
  • MoS2 particles
  • Litol-24
  • grade 45 steel
  • R6M5 steel
  • lubricant viscosity