Skip to main content
Log in

Texture and Anisotropy of the Mechanical Properties of MA2-1, MA14, and Mg–5Li–3Al Alloys

  • STRUCTURE AND PROPERTIES OF THE DEFORMED STATE
  • Published:
Russian Metallurgy (Metally) Aims and scope

Abstract

The anisotropy of the strength properties are compared with the averaged Schmid factors for the operating shear systems of textured pressed bars made of magnesium alloys MA2-1, MA14, and Mg–5Li–3Al in order to determine the ratios of the critical resolved shear stresses (CRSS) for the operating slip and twinning systems. In addition to the main deformation mode by basal slip in the MA2-1 and MA14 alloys, “tensile” {10\(\bar {1}\)2}〈10\(\bar {1}\)1〉 twinning and 〈\(\bar {c}\) + \(\bar {a}\)〉 slip are shown to be active. The ratio of the CRSS of these systems to the CRSS of the basal slip for the MA2-1 alloy is 1.7 and 2.2, respectively; for MA14, it is 1.5 and 1.8, respectively, which causes a lower anisotropy of the strength of the MA14 alloy and a more intense prismatic texture. For the alloy with lithium, the main deformation mechanism apart from basal slip is prismatic slip, for which the relative values of CRSS are 1.4 (which is lower as compared to other magnesium alloys). The results obtained make it possible to interpret the anisotropy of the properties in terms of Hill’s yield criterion, to calculate the corresponding anisotropy parameters, to plot yield locuses for the most common textures of semifinished products, and to show that the contribution of single-crystal anisotropy to the anisotropy of the strength properties significantly exceeds the contribution of the texture factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. E. Kelly and W. Hosford, “The deformation characteristics of textured magnesium,” Trans. Metall. Soc. AIME 242, 654–660 (1968).

    Google Scholar 

  2. S. Ya. Betsofen, O. E. Osintsev, I. A. Grushin, A. A. Petrov, and K. A. Speranskii, “Influence of alloying elements on the deformation mechanism and texture of magnesium alloys,” Deform. Razrushenie Mater., No. 8, 2–17 (2018).

  3. S. Ya. Betsofen, O. E. Osintsev, I. A. Grushin, A. A. Petrov, and K. A. Speranskii, “Laws of formation of texture and anisotropy of mechanical properties of magnesium alloys,” Deform. Razrushenie Mater., No. 9, 2–15 (2018).

  4. S. Ya. Betsofen, L. L. Rokhlin, A. A. Lozovan, R. Wu, and I. I. Voskresenskaya, “Effect of alloying elements on the texture and anisotropy of the mechanical properties of magnesium alloys: Mg–Li, Mg–REM, and Mg–Al alloys,” Metally, No. 6, 80–88 (2014).

    Google Scholar 

  5. S. Pawar, T. J. A. Slater, T. L. Burnett, X. Zhou, G. M. Scamans, Z. Fan, G. E. Thompson, and P. J. Withers, “Crystallographic effects on the corrosion of twin roll cast sheet made of AZ31 Mg alloy sheet,” Acta Mater 133, 90–99 (2017).

    Article  CAS  Google Scholar 

  6. M. Sabbaghian, R. Mahmudia, and K. S. Shin, “Effect of texture and twinning mechanical properties and corrosion behavior of an extruded biodegradable Mg–4Zn alloy,” J. Magnesium Alloys 7, 707–716 (2019).

    Article  CAS  Google Scholar 

  7. G. L. Song, R. Mishra, Z. Q. Xu, “Crystallographic orientation and electrochemical activity of AZ31 Mg alloy,” Electrochem. Commun. 12, 1009–1012 (2010).

    Article  CAS  Google Scholar 

  8. S. Ya. Betsofen, L. L. Rokhlin, A. A. Lozovan, R. Wu, and I. I. Voskresenskaya, “Effect of alloying elements on the texture and anisotropy of the mechanical properties of magnesium alloys: Mg–Li, Mg–REM, and Mg–Al alloys,” Metally, No. 6, 80–88 (2014).

    Google Scholar 

  9. C. Cui, T. Zhu, T. Zhang, S. Betsofen, J. Zhang, and M. Zhang, “Microstructure and texture evolution of Mg–Li alloy during rolling,” Int. J. Mater. Res. 105, 1111–1117 (2014).

    Article  CAS  Google Scholar 

  10. T. Al-Samman, “Comparative study of the deformation behavior of hexagonal magnesium–lithium alloys and a conventional magnesium AZ31 alloy,” Acta Mater. 57, 2229–2242 (2009).

    Article  CAS  Google Scholar 

  11. S. Ya. Betsofen, R. Wu, I. A. Grushin, A. A. Petrov, and K. A. Speranskii, “Mechanism of deformation, texture, and anisotropy of the mechanical properties of MA14, VMD7, and Mg–5Li–3Al alloys,” Deform. Razrushenie Mater., No. 10, 22–28 (2020).

  12. N. V. Ageev, A. A. Babareko, and S. Ya. Betsofen, “Description of texture by the method of inverse pole figures,” Izv. Akad. Nauk SSSR, Ser. Met., No. 1, 94–103 (1974).

  13. D. A. Dzunovich, S. Ya. Betsofen, and P. V. Panin, “Methodological aspects of quantitative textural analysis of semifinished sheet products from hcp alloys (Ti,Zr),” Deform. Razrushenie Mater., No. 11, 8–16 (2016).

  14. B. A. Kolachev, S. Ya. Betsofen, L. A. Bunin, and V. A. Volodin, Physicomechanical Properties of Light Structural Alloys (Metallurgiya, Moscow, 1995).

    Google Scholar 

  15. S. Ya. Betsofen, A. A. Il’in, A. A. Ashmarin, and A. A. Shaforostov, “Effect of a deformation mechanism on the anisotropy of the mechanical properties and the manufacturability of magnesium alloys,” Metally, No. 3, 83–90 (2008).

    Google Scholar 

  16. S. Ya. Betsofen, V. G. Smirnov, A. A. Ashmarin, and A. A. Shaforostov, “Quantitative methods for describing the texture and anisotropy of the properties of titanium and magnesium-based alloys,” Titan, No. 2, 16–23 (2010).

    Google Scholar 

  17. S.-H. Choi, D. H. Kim, H. W. Lee, and E. J. Shin, “Simulation of texture evolution and macroscopic properties in Mg alloys using the crystal plasticity finite element method,” Mater. Sci. Eng., A 257, 1151–1159 (2010).

    Article  Google Scholar 

  18. V. Bekofen, Deformation Processes (Metallurgiya, Moscow, 1977).

    Google Scholar 

  19. K. L. Murty and I. Charit, “Texture development and anisotropic deformation of zircaloys (review),” Prog. Nucl. Energy 48, 325–359 (2006).

    Article  CAS  Google Scholar 

  20. Z. Li, H. Yang, and J. Liu, “Comparative study on yield behavior and non-associated yield criteria of AZ31B and ZK61M magnesium alloys,” Mater. Sci. Eng., A 759, 329–345 (2019).

    Article  CAS  Google Scholar 

  21. T. Naka, T. Uemori, R. Hino, M. Kohzu, K. Higashi, and F. Yoshida, “Effects of strain rate, temperature and sheet thickness on yield locus of AZ31 magnesium alloy sheet,” J. Mater. Process. Technol. 201 (1–3), 395–400 (2008).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ya. Betsofen.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by K. Shakhlevich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Betsofen, S.Y., Wu, R., Grushin, I.A. et al. Texture and Anisotropy of the Mechanical Properties of MA2-1, MA14, and Mg–5Li–3Al Alloys. Russ. Metall. 2022, 339–346 (2022). https://doi.org/10.1134/S0036029522040036

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036029522040036

Keywords:

Navigation