Skip to main content
Log in

Effect of Cathodic Polarization on the Depassivation of Oxidized Nickel

  • Published:
Russian Metallurgy (Metally) Aims and scope

Abstract

The dissolution of nickel in sulfuric acid (100 g/L) is studied by cyclic voltammetry using intermediate cathodic polarization between cycles. The main laws of the joint effect of the potential (from –2.0 to ‒0.2 V) and the duration (32–1800 s) of cathode pulses on the metal depassivation are revealed. Anode nickel oxide films are found to disappear during cathodic polarization of the metal as a result of simultaneous processes of reduction and chemical dissolution of oxides in the electrolyte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. S. F. Belov, V. A. Bryukvin, A. M. Levin, and O. G. Kuznetsova, “Dissolution of metallic nickel under the action of an industrial-frequency alternating current in sulfuric acid electrolytes,” Tsvetn. Met., No. 1, 39–41 (2005).

  2. O. G. Kuznetsova, S. F. Belov, P. V. Ermuratskii, V. A. Bryukvin, A. M. Levin, and N. Yu. Frolov, “Comparative analysis of the electrochemical methods of processing nickel–cobalt-containing secondary raw materials under the action of ac and dc,” Tsvetn. Met., No. 2, 53–56 (2007).

  3. L. P. Shul’gin, “Overvoltage of the electrode reactions in solutions upon passing of symmetric alternating current,” Zh. Fiz. Khim., 53 (8), 2048–2051 (1979).

    Google Scholar 

  4. L. P. Shul’gin, “Change in the thermodynamic characteristics of ac oxidation and reduction in solutions,” in Chemistry, Chemical Technology and Metallurgy of Rare Elements (Izd. Kol’sk. Filiala AN SSSR, 1982), pp. 119–126.

  5. O. G. Kuznetsova and A. M. Levin, “On the depassivation of nickel under alternating current,” in Proceedings of International Conference on Innovative Technologies in Future Science (AETERNA, Ufa, 2017), Vol. 3, pp. 28–32.

  6. A. V. Shein, O. S. Ivanova, and R. N. Minkh, “Influence of anions on the anodic dissolution of nickel silicide in a sulfuric acid electrolyte,” Zashch. Met. 44 (1), 38–44 (2008).

    Google Scholar 

  7. G. S. Bekenova, A. B. Bayeshov, A. Yilmaz, and H. S. Rafikova, “Electrochemical properties of the nickel electrode during polarization by asymmetric alternating current,” Sci. Soc., No. 2, 26–33 (2016).

  8. A. I. Oshe and V. A. Lovachev, “Anodic oxidation of nickel in the potential range before the “main” passivation of nickel,” Elektrokhimiya 6 (9), 1419–1423 (1970).

    CAS  Google Scholar 

  9. J. R. Vilche and A. J. Arvia, “Kinetics and mechanism of the nickel electrode. II. Acid solution containing a high concentration of sulphate and nickel ions,” Corros. Sci. 18 (5), 441–463 (1978).

    Article  CAS  Google Scholar 

  10. I. Garts, “Passivation of deformed nickel in sulfuric acid,” Zashch. Met. 15 (1), 29–33 (1979).

    Google Scholar 

  11. S. F. Belov, P. V. Ermuratskii, V. A. Bryukvin, A. M. Levin, and O. G. Kuznetsova, “Dissolution of the magnetic fraction of Bessemer matte unddr an industrial-frequency alternating current,” Tsvetn. Met., No. 2, 30–32 (2005).

  12. A. P. Pchel’nikov, A. E. Kazachinskii, Ya. B., Skuratnik, S. A. Paprotskii, G. N. Markos’yan, A. I. Molodov, and V. V. Losev, “Method of determining hydrogen in metals and alloys,” USSR Patent 1779986, 1990.

  13. V. V. Parshutin, “Corrosion and electrochemical behavior of pseudoalloys based on tungsten and its components,” Elektron. Obrab. Mater., No. 6, 27–45 (2008).

  14. B. Mc Daugall and M. Cohen, “Mechanism of the anodic oxidation of nickel,” J. Electrochem. Soc. 123 (12), 1783–1789 (1976).

    Article  Google Scholar 

  15. B. Mc Daugall and M. Cohen, “Breakdown of the oxide films on nickel,” J. Electrochem. Soc. 124 (8), 1185–1190 (1977).

    Article  Google Scholar 

  16. A. P. Pchel’nikov, “Electrochemistry and corrosion of hydrogenated nickel, copper, and copper–nickel alloys in aqueous electrolytes,” Extended Abstract of Doctoral (Chem.) Dissertation, Moscow, 2006.

  17. N. V. Gavrilova, Yu. N. Shalimov, and E. P. Kharchenko, “Prospects of using hydrogen in power engineering,” Elektrotekhn. Kompleksy Sistemy Upravleniya, No. 1, 60–65 (2008).

    Google Scholar 

  18. A. I. Marshakov, A. A. Rybkina, T. A. Nenasheva, and M. A. Meleeva, “Effect of atomic hydrogen on the kinetics of active iron dissolution. II. Methods of cyclic potential pulse and bipolar membrane electrode,” Kondens. Sredy Mezhfaz. Granitsy 14 (63), 349–357 (2012).

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was performed in terms of state task no. 007-00129-18-00.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Levin.

Additional information

Translated by K. Shakhlevich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsova, O.G., Levin, A.M., Tsybin, O.I. et al. Effect of Cathodic Polarization on the Depassivation of Oxidized Nickel. Russ. Metall. 2018, 651–654 (2018). https://doi.org/10.1134/S0036029518070078

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036029518070078

Keywords:

Navigation