Abstract
The oxidation of natural sphalerite on heating in an oxidative medium is studied by thermogravimetry coupled with scanning calorimetry, mass spectrometry of released gases, and X-ray powder diffraction analysis. The mechanism of sphalerite oxidation when the particle surface is equally accessible and sulfur dioxide is removed from the reaction zone is the formation of ZnO, ZnFe2O4, and SO2. The process is found to be one-stage, as determined by a nonisothermal kinetic method. The activation energies are from 293 to 317 kJ/mol depending on the model used. Natural sphalerite is oxidized in the kinetic regime, and the rate-determining steps are the formation and growth of new-phase nuclei.
Similar content being viewed by others
References
A. V. Vanyukov and V. Ya. Zaitsev, Theory of Pyrometallurgical Processes (Metallurgiya, Moscow, 1993).
G. S. Frents, Oxidation of Metal Sulfides (Nauka, Moscow, 1964).
F. Habashi, “Recent trends in extractive metallurgy,” J. Min. Met. B 45, 1–13 (2009).
R. Dimitrov and I. Bonev, “Mechanism of zinc sulphide oxidation,” Thermochim. Acta 106, 9–25 (1986).
T. T. Chen and J. E. Dutrizac, “Mineralogical changes occurring during the fluid-bed roasting of zinc sulfide concentrates,” JOM 12, 46–51 (2004).
R. I. Dimitrov, N. Moldovanska, I. K. Bonev, and Ž. Živkovic, “Oxidation of marmatite,” Thermochim. Acta 362, 145–151 (2000).
B. Boyanov, A. Peltekov, and V. Petkova, “Thermal behavior of zinc sulfide concentrates with different iron content at oxidative roasting,” Thermochim. Acta 586, 9–16 (2014).
D. Schultze, U. Steinike, J. Kussin, and U. Kretzschmar, “Thermal oxidation of ZnS modifications sphalerite and wurtzite,” Cryst. Res. Technol. 30 (4), 553–558 (1995).
J. W. Graydon and D. W. Kirk, “A microscopic study of the transformation of sphalerite particles during the roasting of zinc concentrate,” Met. Trans. B 19, 141–146 (1988).
C. A. R. Queiroz, R. J. Carvalho, and P. J. Moura, “Oxidation of zinc sulphide concentrate in a fluidised bed reactor. Part 2. The influence of experimental variables of the kinetics,” Braz. J. Chem. Eng. 22, 127–133 (2005).
J. C. Balarini, L. de Oliveira, T. L. S. Miranda, R. M. Zica de Castro, and A. Salum, “Importance of roasted sulphide concentrates characterization in the hydrometallurgical extraction of zinc,” Miner. Eng. 21, 100–110 (2008).
M. A. Lyamina, “Kinetics of zinc sulfide oxidation during melting in an oxygen-suspended cyclone-electrothermal (KIVTsET) aggregate,” Tsvetn. Met., No. 2, 59–62 (2004).
B.-S. Kim, S.-B. Jeong, Y. Kim, and H.-S. Kim, “Oxidative roasting of low grade zinc sulfide concentrate from Gagok mine in Korea,” Mater. Trans. 51 (8), 1481–1485 (2010).
S. N. Shin, V. A. Kirakosyan, and S. I. Korkiya, “On the kinetic parameters of the oxidation of zinc and cadmium sulfides,” Tsvetn. Met., No. 1, 32–35 (1981).
R. I. Gulyaeva, E. N. Selivanov, and S. M. Pikalov, “The mechanisms and kinetics of Zn1–xFexS sulphides and sphalerite oxidation,” in Proceedings of International Conference on Thermal Analysis and Calorimetry in Russia (RTAC-2016) (2016), Vol. 1, pp. 416–420.
J. Opffermann, NETZSCH Thermokinetics 3.0. Version 2006.08. www.therm-soft.com.
R. I. Gulyaeva, E. N. Selivanov, and A. N. Mansurova, “Chemism and kinetics of the oxidation of zinc–calcium oxysulfide,” Russ. Metall. (Metally), No. 5, 327–331 (2013).
“Powder diffraction file-2 (PDF2+),” in International Centre for Diffraction Data (ICDD) (2012).
D. A. Chareev, V. O. Osadchii, A. A. Shiryaev, A. N. Nekrasov, A. V. Koshelev, and E. G. Osadchii, “Single-crystal Fe-bearing sphalerite: synthesis, lattice parameter, thermal expansion coefficient, and microhardness,” Phys. Chem. Miner. (2016). doi 10.1007/s00269-016-0856-z
A. M. Abdel-Rehim, “Thermal and XRD analysis of Egyptian galena,” J. Therm. Anal. Cal. 86 (2), 393–401 (2006).
H. Iwanaga, A. Kunishige, and S. J. Takeuchi, “Anisotropic thermal expansion in wurtzite-type crystals,” J. Mater. Sci. 35, 2451–2454 (2000).
S. K. Filatov, High-Temperature Crystal Chemistry. Theory, Methods, and Results of Investigation (Nedra, Leningrad, 1990).
T. Yamashita, R. Hansson, and P. C. Hayes, “The relationships between microstructure and crystal structure in zincite solid solutions,” J. Mater. Sci. 41, 5559–5568 (2006).
V. Špelàk, K. Tkàcovà, V. V. Boldyrev, and U. Steinike, “Crystal structure refinement of the mechanically activated spinel–ferrite,” Mater. Sci. Forum 228–231, 783–788 (1996).
S. Vyazovkin, A. K. Burnham, J. M. Criado, L. A. Pèrez-Maqueda, C. Popescu, and N. Sbirrazzuoli, “ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data,” Thermochim. Acta 520, 1–19 (2011).
ASTM E1641-07. Standard Test Method for Decomposition Kinetics by Thermogravimetry. Annual Book of ASTM Standards (ASTM International, West Conshohocken, PA, 2007), Vol. 14.02.
Ž. Živković, D. Živković, D. Grujičić, and V. Savović, “Kinetics of the oxidation process in the system Zn–Fe–S–O,” Thermochim. Acta 315, 33–37 (1998).
Author information
Authors and Affiliations
Corresponding author
Additional information
Original Russian Text © R.I. Gulyaeva, E.N. Selivanov, S.M. Pikalov, 2018, published in Metally, 2018, No. 2, pp. 3–10.
Rights and permissions
About this article
Cite this article
Gulyaeva, R.I., Selivanov, E.N. & Pikalov, S.M. Mechanism and Kinetics of the Thermal Oxidation of Natural Sphalerite. Russ. Metall. 2018, 221–227 (2018). https://doi.org/10.1134/S0036029518030047
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S0036029518030047