Skip to main content
Log in

Mechanism and Kinetics of the Thermal Oxidation of Natural Sphalerite

  • Published:
Russian Metallurgy (Metally) Aims and scope

Abstract

The oxidation of natural sphalerite on heating in an oxidative medium is studied by thermogravimetry coupled with scanning calorimetry, mass spectrometry of released gases, and X-ray powder diffraction analysis. The mechanism of sphalerite oxidation when the particle surface is equally accessible and sulfur dioxide is removed from the reaction zone is the formation of ZnO, ZnFe2O4, and SO2. The process is found to be one-stage, as determined by a nonisothermal kinetic method. The activation energies are from 293 to 317 kJ/mol depending on the model used. Natural sphalerite is oxidized in the kinetic regime, and the rate-determining steps are the formation and growth of new-phase nuclei.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. V. Vanyukov and V. Ya. Zaitsev, Theory of Pyrometallurgical Processes (Metallurgiya, Moscow, 1993).

    Google Scholar 

  2. G. S. Frents, Oxidation of Metal Sulfides (Nauka, Moscow, 1964).

    Google Scholar 

  3. F. Habashi, “Recent trends in extractive metallurgy,” J. Min. Met. B 45, 1–13 (2009).

    Article  Google Scholar 

  4. R. Dimitrov and I. Bonev, “Mechanism of zinc sulphide oxidation,” Thermochim. Acta 106, 9–25 (1986).

    Article  Google Scholar 

  5. T. T. Chen and J. E. Dutrizac, “Mineralogical changes occurring during the fluid-bed roasting of zinc sulfide concentrates,” JOM 12, 46–51 (2004).

    Article  Google Scholar 

  6. R. I. Dimitrov, N. Moldovanska, I. K. Bonev, and Ž. Živkovic, “Oxidation of marmatite,” Thermochim. Acta 362, 145–151 (2000).

    Article  Google Scholar 

  7. B. Boyanov, A. Peltekov, and V. Petkova, “Thermal behavior of zinc sulfide concentrates with different iron content at oxidative roasting,” Thermochim. Acta 586, 9–16 (2014).

    Article  Google Scholar 

  8. D. Schultze, U. Steinike, J. Kussin, and U. Kretzschmar, “Thermal oxidation of ZnS modifications sphalerite and wurtzite,” Cryst. Res. Technol. 30 (4), 553–558 (1995).

    Article  Google Scholar 

  9. J. W. Graydon and D. W. Kirk, “A microscopic study of the transformation of sphalerite particles during the roasting of zinc concentrate,” Met. Trans. B 19, 141–146 (1988).

    Article  Google Scholar 

  10. C. A. R. Queiroz, R. J. Carvalho, and P. J. Moura, “Oxidation of zinc sulphide concentrate in a fluidised bed reactor. Part 2. The influence of experimental variables of the kinetics,” Braz. J. Chem. Eng. 22, 127–133 (2005).

    Article  Google Scholar 

  11. J. C. Balarini, L. de Oliveira, T. L. S. Miranda, R. M. Zica de Castro, and A. Salum, “Importance of roasted sulphide concentrates characterization in the hydrometallurgical extraction of zinc,” Miner. Eng. 21, 100–110 (2008).

    Article  Google Scholar 

  12. M. A. Lyamina, “Kinetics of zinc sulfide oxidation during melting in an oxygen-suspended cyclone-electrothermal (KIVTsET) aggregate,” Tsvetn. Met., No. 2, 59–62 (2004).

    Google Scholar 

  13. B.-S. Kim, S.-B. Jeong, Y. Kim, and H.-S. Kim, “Oxidative roasting of low grade zinc sulfide concentrate from Gagok mine in Korea,” Mater. Trans. 51 (8), 1481–1485 (2010).

    Article  Google Scholar 

  14. S. N. Shin, V. A. Kirakosyan, and S. I. Korkiya, “On the kinetic parameters of the oxidation of zinc and cadmium sulfides,” Tsvetn. Met., No. 1, 32–35 (1981).

    Google Scholar 

  15. R. I. Gulyaeva, E. N. Selivanov, and S. M. Pikalov, “The mechanisms and kinetics of Zn1–xFexS sulphides and sphalerite oxidation,” in Proceedings of International Conference on Thermal Analysis and Calorimetry in Russia (RTAC-2016) (2016), Vol. 1, pp. 416–420.

    Google Scholar 

  16. J. Opffermann, NETZSCH Thermokinetics 3.0. Version 2006.08. www.therm-soft.com.

  17. R. I. Gulyaeva, E. N. Selivanov, and A. N. Mansurova, “Chemism and kinetics of the oxidation of zinc–calcium oxysulfide,” Russ. Metall. (Metally), No. 5, 327–331 (2013).

    Article  Google Scholar 

  18. “Powder diffraction file-2 (PDF2+),” in International Centre for Diffraction Data (ICDD) (2012).

  19. D. A. Chareev, V. O. Osadchii, A. A. Shiryaev, A. N. Nekrasov, A. V. Koshelev, and E. G. Osadchii, “Single-crystal Fe-bearing sphalerite: synthesis, lattice parameter, thermal expansion coefficient, and microhardness,” Phys. Chem. Miner. (2016). doi 10.1007/s00269-016-0856-z

    Google Scholar 

  20. A. M. Abdel-Rehim, “Thermal and XRD analysis of Egyptian galena,” J. Therm. Anal. Cal. 86 (2), 393–401 (2006).

    Article  Google Scholar 

  21. H. Iwanaga, A. Kunishige, and S. J. Takeuchi, “Anisotropic thermal expansion in wurtzite-type crystals,” J. Mater. Sci. 35, 2451–2454 (2000).

    Article  Google Scholar 

  22. S. K. Filatov, High-Temperature Crystal Chemistry. Theory, Methods, and Results of Investigation (Nedra, Leningrad, 1990).

    Google Scholar 

  23. T. Yamashita, R. Hansson, and P. C. Hayes, “The relationships between microstructure and crystal structure in zincite solid solutions,” J. Mater. Sci. 41, 5559–5568 (2006).

    Article  Google Scholar 

  24. V. Špelàk, K. Tkàcovà, V. V. Boldyrev, and U. Steinike, “Crystal structure refinement of the mechanically activated spinel–ferrite,” Mater. Sci. Forum 228–231, 783–788 (1996).

    Google Scholar 

  25. S. Vyazovkin, A. K. Burnham, J. M. Criado, L. A. Pèrez-Maqueda, C. Popescu, and N. Sbirrazzuoli, “ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data,” Thermochim. Acta 520, 1–19 (2011).

    Article  Google Scholar 

  26. ASTM E1641-07. Standard Test Method for Decomposition Kinetics by Thermogravimetry. Annual Book of ASTM Standards (ASTM International, West Conshohocken, PA, 2007), Vol. 14.02.

  27. Ž. Živković, D. Živković, D. Grujičić, and V. Savović, “Kinetics of the oxidation process in the system Zn–Fe–S–O,” Thermochim. Acta 315, 33–37 (1998).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. I. Gulyaeva.

Additional information

Original Russian Text © R.I. Gulyaeva, E.N. Selivanov, S.M. Pikalov, 2018, published in Metally, 2018, No. 2, pp. 3–10.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gulyaeva, R.I., Selivanov, E.N. & Pikalov, S.M. Mechanism and Kinetics of the Thermal Oxidation of Natural Sphalerite. Russ. Metall. 2018, 221–227 (2018). https://doi.org/10.1134/S0036029518030047

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036029518030047

Keywords

Navigation