Advertisement

Russian Metallurgy (Metally)

, Volume 2018, Issue 2, pp 155–162 | Cite as

LaCoO3 – δ as the Material of an Oxygen Electrode for a Molten Carbonate Fuel Cell: II. Catalytic Activity of LaCoO3 – δ for the Electroreduction of Oxygen in Molten (Li0.62K0.38)2CO3

  • S. I. Vecherskii
  • M. A. Konopel’koEmail author
  • N. N. Batalov
  • M. A. Zvezdkin
  • I. V. Zvezdkina
Article
  • 19 Downloads

Abstract

The kinetics of the electroreduction of O2 in the (Li0.62K0.38)2CO3 eutectic melt on the oxide electrode prepared of in situ lithiated LaCoO3 – δ is studied. Superoxide ions and molecular oxygen are shown to be the major electroactive particles under the studied conditions, which correlates with the investigations on a gold electrode. The reaction mechanism on the oxide electrode differs from the mechanisms proposed for the gold electrode. Several mechanisms are proposed to take into account the specificity of the oxide electrode. The exchange current densities are found to be independent of the partial oxygen pressure and to vary in a range of 220–290 mA/cm2 depending on the experimental conditions and the operating mechanism.

Keywords

molten carbonate fuel cell perovskite lanthanum cobaltite reduction of oxygen electrocatalytic activity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Franke and J. Winnick, “A high performance molten carbonate fuel cell cathode,” J. Appl. Electrochem. 119 (1), 1–9 (1989).CrossRefGoogle Scholar
  2. 2.
    P. Ganesan, H. Colon, B. Haran, and B. N. Popov, “Performance of La0.8Sr0.2CoO3 coated NiO as cathodes for molten carbonate fuel cells,” J. Power Sources 115 (1), 12–18 (2003).CrossRefGoogle Scholar
  3. 3.
    B. Huang, W. Shao-rong, Y. Qing-chun, L. Yu, and H. Ke-Ao, “Electrochemical characterization of La0.8Sr0.2MnO3-coated NiO as cathodes for molten carbonate fuel cells,” J. Appl. Electrochem. 135 (11), 1145–1156 (2005).CrossRefGoogle Scholar
  4. 4.
    S. A. Song, S. C. Jang, J. Han, S. P. Yoon, S. W. Nam, I. H. Oh, and T. H. Lim, “Enhancement of cell performance using a gadolinium strontium cobaltite coated cathode in molten carbonate fuel cells,” J. Power Sources 196 (23), 9900–9905 (2011).CrossRefGoogle Scholar
  5. 5.
    Y. Gong, X. Li, L. Zhang, W. Tharp, C. Qin, and K. Huang, “Promoting electrocatalytic activity of a composite SOFC cathode La0.8Sr0.2MnO3–δ/Ce0.8Gd0.2O2–δ with molten carbonates,” J. Electrochem. Soc. 161 (3), F226–F232 (2014).CrossRefGoogle Scholar
  6. 6.
    M. Anderson and Y. S. Lin, “Carbonate–ceramic dualphase membrane for carbon dioxide separation,” J. Membr. Sci. 357 (1–2), 122–129 (2010).CrossRefGoogle Scholar
  7. 7.
    C. E. Baumgartner, R. H. Arendt, C. D. Iacovangelo, and B. R. Karas, “Molten carbonate fuel cell cathode materials study,” J. Electrochem. Soc. 131 (10), 2217–2221 (1984).CrossRefGoogle Scholar
  8. 8.
    C. Y. Yuh and J. R. Selman, “Polarization of the molten carbonate fuel cell anode and cathode,” J. Electrochem. Soc. 131 (9), 2062–2069 (1984).CrossRefGoogle Scholar
  9. 9.
    H. Morita, M. Komoda, Y. Mugikura, Y. Izaki, T. Watanabe, Y. Masuda, and T. Matsuyama, “Performance analysis of molten carbonate fuel cell using a Li/Na electrolyte,” J. Power Sources 112 (2), 509–518 (2002).CrossRefGoogle Scholar
  10. 10.
    R. C. Makkus, K. Hemmes, and J. H. W. de Wit, “A comparative study of NiO(Li), LiFeO2, and LiCoO2 porous cathodes for molten carbonate fuel cells,” J. Electrochem. Soc. 141 (12), 3429–3438 (1994).CrossRefGoogle Scholar
  11. 11.
    S. I. Vecherskii, M. A. Konopel’ko, and N. N. Batalov, “Equilibrium concentration of electroactive particles in molten (Li0.62K0.38)2CO3 and mechanisms of oxygen reduction on the gold electrode,” Elektrokhim. Energetika 11 (3), 120–127 (2011).Google Scholar
  12. 12.
    S. I. Vecherskii, M. A. Konopel’ko, and N. N. Batalov, “Catalytic activity of the LaLi0.1Co0.1Fe0.8O3–δ cathode in molten (Li0.62K0.38)2CO3: I. Experimental results and equivalent electrical scheme of an oxide–melt contact,” Elektrokhim. Energetika 14 (1), 11–18 (2014).Google Scholar
  13. 13.
    S. I. Vecherskii, M. A. Konopel’ko, and N. N. Batalov, “Catalytic activity of the LaLi0.1Co0.1Fe0.8O3–δ cathode in molten (Li0.62K0.38)2CO3: II. Reaction mechanisms and catalytic activity of an oxide electrode,” Elektrokhim. Energetika 14 (1), 19–25 (2014).Google Scholar
  14. 14.
    J. A. Prins-Jansen, K. Hemmes, and J. H. W. de Wit, “An extensive treatment of the agglomerate model for porous electrodes in molten carbonate fuel cells: I. Qualitative analysis of the steady-state model,” Electrochim. Acta 42 (23–24), 3585–3600 (1997).CrossRefGoogle Scholar
  15. 15.
    P. Delahay, “A new electroanalysis method: coulostatic or charge-step method,” Anal. Chim. Acta 27, 90–93 (1962).CrossRefGoogle Scholar
  16. 16.
    G. Wilemski, “Simple porous models for carbonate fuel cells,” J. Electrochem. Soc. 130 (1), 117–121 (1983).CrossRefGoogle Scholar
  17. 17.
    A. L. Rotinyan, K. I. Tikhonov, and I. A. Shoshina, Theoretical Electrochemistry, Ed. by A. L. Rotinyan (Khimiya, Leningrad, 1981).Google Scholar
  18. 18.
    M. Enyo and T. Yokoyama, “The reaction order and general equations for electrode kinetics,” Electrochim. Acta 16, 223–243 (1971).CrossRefGoogle Scholar
  19. 19.
    M. A. Konopel’ko, N. N. Batalov, and N. O. Esina, “Electrochemical activity of solid solutions La1–xSrxCoO3 in the oxygen electroreduction in carbonate melts,” Elektrokhimiya 36 (11), 1241–1245 (2000).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • S. I. Vecherskii
    • 1
  • M. A. Konopel’ko
    • 1
    Email author
  • N. N. Batalov
    • 1
  • M. A. Zvezdkin
    • 1
  • I. V. Zvezdkina
    • 1
  1. 1.Institute of High-Temperature Electrochemistry, Ural BranchRussian Academy of SciencesYekaterinburgRussia

Personalised recommendations