Skip to main content
Log in

LaCoO3 – δ as the Material of an Oxygen Electrode for a Molten Carbonate Fuel Cell: II. Catalytic Activity of LaCoO3 – δ for the Electroreduction of Oxygen in Molten (Li0.62K0.38)2CO3

  • Published:
Russian Metallurgy (Metally) Aims and scope

Abstract

The kinetics of the electroreduction of O2 in the (Li0.62K0.38)2CO3 eutectic melt on the oxide electrode prepared of in situ lithiated LaCoO3 – δ is studied. Superoxide ions and molecular oxygen are shown to be the major electroactive particles under the studied conditions, which correlates with the investigations on a gold electrode. The reaction mechanism on the oxide electrode differs from the mechanisms proposed for the gold electrode. Several mechanisms are proposed to take into account the specificity of the oxide electrode. The exchange current densities are found to be independent of the partial oxygen pressure and to vary in a range of 220–290 mA/cm2 depending on the experimental conditions and the operating mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Franke and J. Winnick, “A high performance molten carbonate fuel cell cathode,” J. Appl. Electrochem. 119 (1), 1–9 (1989).

    Article  Google Scholar 

  2. P. Ganesan, H. Colon, B. Haran, and B. N. Popov, “Performance of La0.8Sr0.2CoO3 coated NiO as cathodes for molten carbonate fuel cells,” J. Power Sources 115 (1), 12–18 (2003).

    Article  Google Scholar 

  3. B. Huang, W. Shao-rong, Y. Qing-chun, L. Yu, and H. Ke-Ao, “Electrochemical characterization of La0.8Sr0.2MnO3-coated NiO as cathodes for molten carbonate fuel cells,” J. Appl. Electrochem. 135 (11), 1145–1156 (2005).

    Article  Google Scholar 

  4. S. A. Song, S. C. Jang, J. Han, S. P. Yoon, S. W. Nam, I. H. Oh, and T. H. Lim, “Enhancement of cell performance using a gadolinium strontium cobaltite coated cathode in molten carbonate fuel cells,” J. Power Sources 196 (23), 9900–9905 (2011).

    Article  Google Scholar 

  5. Y. Gong, X. Li, L. Zhang, W. Tharp, C. Qin, and K. Huang, “Promoting electrocatalytic activity of a composite SOFC cathode La0.8Sr0.2MnO3–δ/Ce0.8Gd0.2O2–δ with molten carbonates,” J. Electrochem. Soc. 161 (3), F226–F232 (2014).

    Article  Google Scholar 

  6. M. Anderson and Y. S. Lin, “Carbonate–ceramic dualphase membrane for carbon dioxide separation,” J. Membr. Sci. 357 (1–2), 122–129 (2010).

    Article  Google Scholar 

  7. C. E. Baumgartner, R. H. Arendt, C. D. Iacovangelo, and B. R. Karas, “Molten carbonate fuel cell cathode materials study,” J. Electrochem. Soc. 131 (10), 2217–2221 (1984).

    Article  Google Scholar 

  8. C. Y. Yuh and J. R. Selman, “Polarization of the molten carbonate fuel cell anode and cathode,” J. Electrochem. Soc. 131 (9), 2062–2069 (1984).

    Article  Google Scholar 

  9. H. Morita, M. Komoda, Y. Mugikura, Y. Izaki, T. Watanabe, Y. Masuda, and T. Matsuyama, “Performance analysis of molten carbonate fuel cell using a Li/Na electrolyte,” J. Power Sources 112 (2), 509–518 (2002).

    Article  Google Scholar 

  10. R. C. Makkus, K. Hemmes, and J. H. W. de Wit, “A comparative study of NiO(Li), LiFeO2, and LiCoO2 porous cathodes for molten carbonate fuel cells,” J. Electrochem. Soc. 141 (12), 3429–3438 (1994).

    Article  Google Scholar 

  11. S. I. Vecherskii, M. A. Konopel’ko, and N. N. Batalov, “Equilibrium concentration of electroactive particles in molten (Li0.62K0.38)2CO3 and mechanisms of oxygen reduction on the gold electrode,” Elektrokhim. Energetika 11 (3), 120–127 (2011).

    Google Scholar 

  12. S. I. Vecherskii, M. A. Konopel’ko, and N. N. Batalov, “Catalytic activity of the LaLi0.1Co0.1Fe0.8O3–δ cathode in molten (Li0.62K0.38)2CO3: I. Experimental results and equivalent electrical scheme of an oxide–melt contact,” Elektrokhim. Energetika 14 (1), 11–18 (2014).

    Google Scholar 

  13. S. I. Vecherskii, M. A. Konopel’ko, and N. N. Batalov, “Catalytic activity of the LaLi0.1Co0.1Fe0.8O3–δ cathode in molten (Li0.62K0.38)2CO3: II. Reaction mechanisms and catalytic activity of an oxide electrode,” Elektrokhim. Energetika 14 (1), 19–25 (2014).

    Google Scholar 

  14. J. A. Prins-Jansen, K. Hemmes, and J. H. W. de Wit, “An extensive treatment of the agglomerate model for porous electrodes in molten carbonate fuel cells: I. Qualitative analysis of the steady-state model,” Electrochim. Acta 42 (23–24), 3585–3600 (1997).

    Article  Google Scholar 

  15. P. Delahay, “A new electroanalysis method: coulostatic or charge-step method,” Anal. Chim. Acta 27, 90–93 (1962).

    Article  Google Scholar 

  16. G. Wilemski, “Simple porous models for carbonate fuel cells,” J. Electrochem. Soc. 130 (1), 117–121 (1983).

    Article  Google Scholar 

  17. A. L. Rotinyan, K. I. Tikhonov, and I. A. Shoshina, Theoretical Electrochemistry, Ed. by A. L. Rotinyan (Khimiya, Leningrad, 1981).

  18. M. Enyo and T. Yokoyama, “The reaction order and general equations for electrode kinetics,” Electrochim. Acta 16, 223–243 (1971).

    Article  Google Scholar 

  19. M. A. Konopel’ko, N. N. Batalov, and N. O. Esina, “Electrochemical activity of solid solutions La1–xSrxCoO3 in the oxygen electroreduction in carbonate melts,” Elektrokhimiya 36 (11), 1241–1245 (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Konopel’ko.

Additional information

Original Russian Text © S.I. Vecherskii, M.A. Konopel’ko, N.N. Batalov, M.A. Zvezdkin, I.V. Zvezdkina, 2018, published in Rasplavy, 2018, No. 1, pp. 38–50.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vecherskii, S.I., Konopel’ko, M.A., Batalov, N.N. et al. LaCoO3 – δ as the Material of an Oxygen Electrode for a Molten Carbonate Fuel Cell: II. Catalytic Activity of LaCoO3 – δ for the Electroreduction of Oxygen in Molten (Li0.62K0.38)2CO3. Russ. Metall. 2018, 155–162 (2018). https://doi.org/10.1134/S0036029518020210

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036029518020210

Keywords

Navigation