Russian Metallurgy (Metally)

, Volume 2016, Issue 13, pp 1283–1286 | Cite as

Heat-insulating aerogel composites for a hydrothermal reactor

  • A. D. Vedenin
  • P. A. Vityaz’
  • A. L. Galinovskii
  • I. S. Ivanova
  • Yu. A. Mazalov
  • A. P. Pustovgar
  • L. V. Sudnik
New Materials. Technology of Composite Materials

Abstract

The SiO2–TiO2 aerogel composites used in the heat insulation of a hydrothermal reactor and the method of their fabrication using a liquid glass technology are analyzed. The process of fabrication of the composite material includes the following stages: the ion exchange of sodium liquid glass with the formation of silica hydrosol; the concentration of hydrosol; the formation of hydrogel and its maturing; the formation of alcogel of an SiO2–TiO2 composite material; surface modification; subcritical drying of alcogel with the formation of SiO2–TiO2 composite ambigel; and its heat treatment, granulation, and classification. The influence of infrared absorber (titanium dioxide) and the temperature of heat treatment of an SiO2–TiO2 aerogel composite material on its structural and thermal characteristics is studied.

Keywords

hydrothermal reactor thermal isolation SiO2–TiO2 composites aerogel heat treatment thermal conductivity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. A. Shabanova, V. V. Popov, and P. D. Sarkisov, Chemistry and Technology of Nanodispersed Oxides (Akademkniga, Moscow, 2006).Google Scholar
  2. 2.
    A. P. Pustovgar and A. D. Vedenin, “Technology of production of heat-insulating silica aerogel-based composites,” in Proceedings of Conference High-Tech Chemical Technologies-2012 (Moscow, 2012), p.352.Google Scholar
  3. 3.
    Y. Mazalov, A. Pustovgar, V. Grigorev, A. Vedenin, and A. Adamtsevich, “Technology for hydrothermal destruction of organic fuel materials,” Applied Mechanics and Materials 752, 873–877 (2015).CrossRefGoogle Scholar
  4. 4.
    A. A. Ismail and I. A. Ibrahim, “Impact of supercritical drying and heat treatment on physical properties of titania/silica aerogel monolithic and its applications,” J. Applied Catalysis A: General 346 (1, 2), 200–205 (2008).CrossRefGoogle Scholar
  5. 5.
    Y. G. Kwon, S. Y. Choi, E. S. Kang, and S. S. Baek, “Ambient-dried silica aerogel doped with TiO2 powder for thermal insulation,” J. Mater. Sci. 35, 6075–6079 (2000).CrossRefGoogle Scholar
  6. 6.
    S. E. Hwang, H. H. Jang, H. H. Hyun, and Y. S. Ahn, “Effective preparation of crack-free silica aerogels via ambient drying,” J. Sol-Gel Sci. Techn. 4 (1), 139–146 (2007).CrossRefGoogle Scholar
  7. 7.
    R. Caps and J. Fricke, “Thermal conductivity of opacified powder filler materials for vacuum insulations,” Int. J. of Termophysics 21 (2), 445–452 (2000).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • A. D. Vedenin
    • 1
  • P. A. Vityaz’
    • 2
  • A. L. Galinovskii
    • 3
  • I. S. Ivanova
    • 1
  • Yu. A. Mazalov
    • 4
  • A. P. Pustovgar
    • 1
  • L. V. Sudnik
    • 5
  1. 1.Moscow State University of Civil EngineeringMoscowRussia
  2. 2.Belarussian Academy of SciencesAcademy of Military Sciences of the Russian Federation, International Academy of EurasiaMoscowRussia
  3. 3.Bauman Moscow State Technical UniversityMoscowRussia
  4. 4.Innovation Center FGBNU GOSNITIMoscowRussia
  5. 5.Institute of Powder MetallurgyBelarussian Academy of SciencesMinskBelarus

Personalised recommendations