Russian Metallurgy (Metally)

, Volume 2014, Issue 3, pp 234–240 | Cite as

Microstructure and crystallographic texture of titanium subjected to combined severe plastic deformation processing

  • R. K. Islamgaliev
  • V. D. Sitdikov
  • K. M. Nesterov
  • A. V. Ganeev
  • E. V. Bochkova


Structural studies of the nanocrystalline titanium powders produced by cryogenic milling followed by severe plastic deformation consolidation are performed. The results obtained are compared with the results obtained for monolithic titanium subjected to severe plastic deformation by torsion.


Severe Plastic Deformation RUSSIAN Metallurgy Dark Field Image Crystallographic Texture High Pressure Torsion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Z. Valiev, R. K. Islamgaliev, and I. V. Aleksandrov, “Bulk nanostructured materials from severe plastic deformation,” Prog. Mater. Sci. 45, 103–189 (2000).CrossRefGoogle Scholar
  2. 2.
    D. R. Nugmanov and R. K. Islamgaliev, “The texture strengthening effect in a magnesium alloy processed by severe plastic deformation,” Advanc. Mater. Sci. 31, 157–162 (2012).Google Scholar
  3. 3.
    R. K. Islamgaliev, M. A. Nikitina, and A. F. Kamalov, “Enhanced thermal stability and mechanical properties of ultrafine-grained aluminum alloy.” Mater. Sci. Forum 667669, 331–336 (2011).Google Scholar
  4. 4.
    G. V. Nurislamova, X. Sauvage, M. Y. Murashkin, R. K. Islamgaliev, and R. Z. Valiev, “Nanostructure and related mechanical properties of an Al-Mg-Si alloy processed by severe plastic deformation,” Phil. Mag. Lett. 88(6), 459–465 (2008).CrossRefGoogle Scholar
  5. 5.
    N. F. Yunusova, R. K. Islamgaliev, and R. Z. Valiev, “High-strain-rate superplasticity in aluminum 1420 and 1421 alloys subjected to equal-channel angular pressing,” Russian Metallurgy (Metally), No. 2, 123–128 (2004).Google Scholar
  6. 6.
    O. B. Kulyasova, R. K. Islamgaliev, B. Mingler, and M. Zehetbauer, “Microstructure and fatigue properties of the ultrafine-grained AM60 magnesium alloy processed by ECAP,” Mater. Sci. Eng. A503, 175–180 (2009).Google Scholar
  7. 7.
    R. K. Islamgaliev, V. U. Kazyhanov, L. O. Shestakova, A. V. Sharafutdinov, and R. Z. Valiev, “Microstructure and mechanical properties of titanium Grade 4 processed by high pressure torsion,” Mater. Sci. Eng. A493, 190–194 (2008).CrossRefGoogle Scholar
  8. 8.
    R. K. Islamgaliev, N. F. Yunusova, M. A. Nikitina, and K. M. Nesterov, “The effect of alloying elements on superplasticity in an ultrafine-grained aluminum alloy,” Rev. Advanc. Mater. Sci. 25(3), 241–248 (2010).Google Scholar
  9. 9.
    Y. M. Wang and E. Ma, “Three strategies to achieve uniform tensile deformation in a nanostructured metal,” Acta Materialia 52, 1699–1709 (2004).CrossRefGoogle Scholar
  10. 10.
    D. Witkin and E. Lavernia, “Synthesis and mechanical behavior of nanostructured materials via cryomilling,” Progr. Mater. Scvi. 51, 1–60 (2006).CrossRefGoogle Scholar
  11. 11.
    H. Wen, Y. Zhao, Y. Li, O. Ertorer, K. M. Nesterov, R. K. Islamgaliev, R. Z. Valiev, and E. J. Lavernia, “High-pressure torsion-induced grain growth and detwinning in cryomilled Cu powders,” Phil. Mag. 90(34), 4541–4546 (2010).CrossRefGoogle Scholar
  12. 12.
    V. A. Shundalov, V. Yu. Ivanov, V. V. Latysh, I. N. Mikhailov, S. P. Pavlinich, and A. V. Sharafutdi- nov, “Method of producing ultrafine-grained workpieces from metals and alloys,” RF Patent 2393936, Byull. Izobret. (2010).Google Scholar
  13. 13.
    E. Scvhafier, M. Zehetbauer, and T. Ungar, “Measurement of screw and edge dislocation density by means of X-ray Bragg profile analysis,” Mater. Sci. Eng. A 319-321, 220–223 (2001).CrossRefGoogle Scholar
  14. 14.
    Information: site
  15. 15.
    S. Li, “Orientation stability in equal channel angular extrusion: Pt. II. Hexagonal close-packed materials,” Acta Materialia 56, 1031–1043 (2008).CrossRefGoogle Scholar
  16. 16.
    E. C. Oliver, M. R. Daymond, J. Quanta da Fonseca, and P. J. Withers, “Intergranular stress evolution in titanium studied by neutron diffraction and self-consistent modeling,” J. Neut. Res. 12(1–3), 33–37 (2004).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • R. K. Islamgaliev
    • 1
  • V. D. Sitdikov
    • 1
  • K. M. Nesterov
    • 1
  • A. V. Ganeev
    • 1
  • E. V. Bochkova
    • 1
  1. 1.Institute of Physics of Advanced MaterialsUfa State Aviation Technical UniversityUfaBashkortostan, Russia

Personalised recommendations