Russian Metallurgy (Metally)

, Volume 2006, Issue 2, pp 108–118 | Cite as

Deoxidation with silicon and the control of oxide inclusions in electrical steels

  • S. S. Shibaev
  • K. V. Grigorovitch
Article
  • 100 Downloads

Abstract

The oxygen solubility in Fe-Si melts in equilibrium with SiO2 at 1873 K has been determined in a concentration range of 0.1–70 wt % Si. Model alloys are melted in quartz crucibles in an argon atmosphere. The oxygen content in analytical samples is determined by the inert-gas reducing-fusion method after careful sample preparation. The results obtained have been processed using a thermodynamic model that can calculate the oxygen activity and solubility in Fe-Si melts up to 100 wt % Si. The effects of the heating rate and the silicon content on the carbon concentration in carbonyl iron and Fe-Si alloys are studied using the inert-gas reducing-fusion method in the temperature range 1673–2373 K. Oriented electrical steels are investigated using fractional gas analysis. The main forms of oxygen in these steels are found to be silicates, Al2O3, and MgAl2O4.

PACS numbers

82.60.Nh 81.40.Rs 82.60.Hc 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Rosa, D. Ruiza, Y. Houbaerta, and R. E. Vandenberghe, “Study of Ordering Phenomena in High Silicon Electrical Steel (up to 12.5 at %) by Mössbauer Spectroscopy,” J. Magn. Magn. Mater. 242–245, 208–211 (2002).CrossRefGoogle Scholar
  2. 2.
    C. Hsin-Min and J. Chipman, “The Chromium-Oxygen Equilibrium in Liquid Iron,” Trans. ASM 38, 70–116 (1947).Google Scholar
  3. 3.
    Steelmaking Data Sourcebook (Gordon & Breach, New York, 1988).Google Scholar
  4. 4.
    N. A. Goken and J. Chipman, “Silicon-Oxygen Equilibrium in Liquid Iron,” Trans. TMS-AIME 194, 171–181 (1952).Google Scholar
  5. 5.
    S. Tszen-Tszi, A. Yu. Polyakov, and A. M. Samarin, “Oxygen Solubility in Liquid Iron-Silicon Alloys at Atmospheric Pressure under Vacuum,” Izv. Akad. Nauk SSSR, OTN Metallurgiya i Toplivo, No. 2, 115–118 (1961).Google Scholar
  6. 6.
    T. Narushima, K. Matsuzawa, Y. Mukai, and Y. Iguchi, “Oxygen Solubility in Liquid Silicon,” Mater. Trans. 35(8), 522–528 (1994).Google Scholar
  7. 7.
    K. Yanaba, Y. Matsumura, T. Narushima, and Y. Iguchi, “Effect of Alloying Elements on the Carbon Solubility in Liquid Silicon Equilibrated with Silicon Carbide,” Mater. Trans. 39(8), 819 (1998).Google Scholar
  8. 8.
    K. V. Grigorovitch, “Fractional Gas Analysis—a New Trend in Quality Control,” Anal. Kontr. 4(3), 244–251 (2000).Google Scholar
  9. 9.
    K. V. Grigorovitch, P. V. Krasovskii, S. A. Isakov, et al., “Processing and Interpretation of Fractional Gas Analysis Results,” Zavod. Lab. 68(9), 3–9 (2002).Google Scholar
  10. 10.
    P. V. Krasovskii and K. V. Grigorovitch, “Thermodynamics of Nonisothermal Reduction of Oxide Inclusions in Carbon-Saturated Melts,” Izv. Ross. Akad. Nauk, Ser. Met., No. 2, 10–16 (2002) [Russian Metallurgy (Metally), No. 2, 114–117 (2002)].Google Scholar
  11. 11.
    N. M. Chuiko, E. I. Moshkevich, A. T. Perevyazko, and Yu. P. Galitskii, Transformer Steel (Metallurgiya, Moscow, 1970) [in Russian].Google Scholar
  12. 12.
    Y. Kurosaki, M. Shiozaki, K. Higashine, and M. Sumimoto, “Effect of Oxide Shape on Magnetic Properties of Semiprocessed Nonoriented Electrical Steel Sheets,” ISIJ Int. 39(6), 607–613 (1999).Google Scholar
  13. 13.
    V. A. Sinel’nikov and B. S. Ivanov, Casting of Low-Carbon Electrical Steel (Metallurgiya, Moscow, 1991) [in Russian].Google Scholar
  14. 14.
    F. Ishii and S. Ban-ya, “Deoxidation Equilibrium of Silicon in Liquid Nickel and Nickel-Iron Alloys,” ISIJ Int. 32(10), 1091–1096 (1992).Google Scholar
  15. 15.
    R. W. Shaw, R. Bredeweg, and P. Rosseto, “Gas Fusion Analysis of Oxygen in Silicon: Separation of Components,” J. Electrochem. Soc. 138(2), 582–584 (1991).CrossRefGoogle Scholar
  16. 16.
    T. Ise, Y. Nuri, Y. Kato, et al., “The Effect of Heating Conditions on the Removal of Oxide Film on Steel Surface by the Inert Gas Fusion Method,” ISIJ Int. 38(12), 1362–1368 (1998).Google Scholar
  17. 17.
    V. K. Grigorovitch, Electronic Structure and Thermodynamics of Iron Alloys (Nauka, Moscow, 1970) [in Russian].Google Scholar
  18. 18.
    P. V. Krasovskii, K. V. Grigorovitch, and W. Gruner, “Comparative Study of Oxide Speciation in Steel by Inert Gas Fusion Technique,” Steel Res. Int. 77(1), 50–58 (2006).Google Scholar
  19. 19.
    H. Hirata and K. Hoshikawa, “Oxygen Solubility and Its Temperature Dependence in a Silicon Melt in Equilibrium with Solid Silica,” J. Cryst. Growth 106, 657–664 (1990).CrossRefGoogle Scholar
  20. 20.
    S. S. Shibaev, P. V. Krasovskii, and K. V. Grigorovitch, “Solubility of Oxygen in Iron-Silicon Melts in Equilibrium with Silica at 1873 K,” ISIJ Int. 45(9), 1243–1247 (2005).CrossRefGoogle Scholar
  21. 21.
    I. Prigogine and R. Defay, Chemical Thermodynamics (Longmans Green and Co., London, 1954; Nauka, Novosibirsk, 1966).Google Scholar
  22. 22.
    G. V. Belov, V. S. Iorish, and V. S. Yungman, “IVTANTHERMO for Windows—Database on Thermodynamic Properties and Related Software,” CALPHAD 23(2), 173–180 (1999).CrossRefGoogle Scholar
  23. 23.
    A. I. Zaitsev, M. A. Zemchenko, and B. M. Mogutnov, “Thermodynamic Properties of {(1 − x)Si + xFe}(I),” J. Chem. Thermodyn. 23, 831–849 (1991).CrossRefGoogle Scholar
  24. 24.
    D. Janke and W. Fisher, “Thermochemical Data for the Reactions 2Cr + 3/2O2 = Cr2O3, Mo + O2 = MoO2 and SO2 = [O] in Liquid Iron,” Arch. Eisenhuttenwes 46(12), 755–760 (1975).Google Scholar
  25. 25.
    Y. Kita, J. B. Van Zytveld, Z. Morita, and T. Iida, “Covalency in Liquid Si and Liquid Transition-Metal-Si Alloys: X-ray Diffraction Studies,” J. Phys.: Condens. Matter 6(4), 811–820 (1994).CrossRefGoogle Scholar
  26. 26.
    M. G. Frohberg and M. Wang, “Thermodynamic Properties of Sulphur in Liquid Copper-Antimony Alloys at 1473 K,” Z. Metallkd. 81(7), 513–515 (1990).Google Scholar
  27. 27.
    P. V. Krasovskii and K. V. Grigorovitch, “Thermodynamics of Iron-Carbon Melts with Silicon or Aluminum,” Izv. Ross. Akad. Nauk, Ser. Met., No. 4, 7–16 (2001) [Russian Metallurgy (Metally), No. 4, 337–345 (2001)].Google Scholar
  28. 28.
    F. Neumann, H. Schenck, and W. Patterson, “Eisen-Kohlenstoff-Legierungen in Thermodynamischer Betrachtung,” Giess.-Wissen, No. 23, 1217–1246 (1959).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2006

Authors and Affiliations

  • S. S. Shibaev
    • 1
  • K. V. Grigorovitch
    • 1
  1. 1.Baikov Institute of Metallurgy and Materials ScienceRussian Academy of SciencesMoscowRussia

Personalised recommendations